Fouad Kerrour
University of Constantine 1

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A Numerical Model of Joule Heating in Piezoresistive Pressure Sensors Abdelaziz Beddiaf; Fouad Kerrour; Salah Kemouche
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 3: June 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (288.541 KB) | DOI: 10.11591/ijece.v6i3.pp1223-1232

Abstract

Thermal drift caused by Joule heating in piezoresistive pressure sensors affects greatly the results in the shift of the offset voltage of the such sensors. The study of the thermal behavior of these sensors is essential to define the parameters that cause the output characteristic drift. The impact of Joule heating in a pressure sensor has been studied. The study involves the solution of  heat transfer equation considering  the conduction in Cartesian coordinates for the transient regime using Finite Difference Method. We determine how the temperature affects the sensor during the applying a supply voltage. For this, the temperature rise generated by Joule heating in piezoresistors has been calculated for  different geometrical parameters of the sensor as well as for different operating time. It is observed that Joule heating leads to important rise temperature in the piezoresistor and, hence, causes drift in the output voltage variations in a  sensor during its operated in a prolonged time. This paper put emphasis on the geometric influence parameters on these characteristics to optimize the sensor performance. The optimization of geometric parameters of sensor allows us to reducing the internal heating effect. Results showed also that low bias voltage should be applied for reducing Joule heating.
Study of the thermal drifts on the piezoresistivity using mobility model and finite difference method of electric heater Abdelaziz Beddiaf; Fouad Kerrour
Bulletin of Electrical Engineering and Informatics Vol 12, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i5.5283

Abstract

In pressure sensors, four piezoresistors connected in a Wheatstone bridge are often provided with a voltage varying between 5 and 10 V. Unfortunately, this voltage is a source of drifts created by electric heating. This study focuses on the internal heating and piezoresistive effect of piezoresistors represented by the variation of their resistivity. To do this, we use the finite difference method (FDM) to solve the heat transfer equation, taking into account the conduction in Cartesian coordinates for the variable regime. We examine how the temperature affects the piezoresistivity in these sensors when the potential is applied. In this case, the variation of the temperature has been calculated as a function of applied voltage, as well as for the operating time of the sensor. Furthermore, the evolution of resistivity over time was determined for several geometric properties of the membrane using the mobility model. This was established for different doping levels. Additionally, the change in resistivity due to the application of voltage was evaluated. It was observed that resistivity is greatly affected by the temperature rise produced by the applied voltage when the device is actuated for a prolonged time. Consequently, this results in drifting in the output response of the sensor.