A. T. Salawudeen
Ahmadu Bello University Zaria

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

An adaptive wavelet transformation filtering algorithm for improving road anomaly detection and characterization in vehicular technology Habeeb Bello-Salau; A. J. Onumanyi; B. O. Sadiq; H. Ohize; A. T. Salawudeen; A. M. Aibinu
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 5: October 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (432.952 KB) | DOI: 10.11591/ijece.v9i5.pp3664-3670

Abstract

Accelerometers are widely used in modern vehicular technologies to automatically detect and characterize road anomalies such as potholes and bumps. However, measurements from an accelerometer are usually plagued by high noise levels, which typically increase the false alarm and misdetection rates of an anomaly detection system. To address this problem, we have developed in this paper an adaptive threshold estimation technique to filter accelerometer measurements effectively to improve road anomaly detection and characterization in vehicular technologies. Our algorithm decomposes the output signal of an accelerometer into multiple scales using wavelet transformation (WT). Then, it correlates the wavelet coefficients across adjacent scales and classifies them using a newly proposed adaptive threshold technique. Furthermore, our algorithm uses a spatial filter to smoothen further the correlated coefficients before using these coefficients to detect road anomalies. Our algorithm then characterizes the detected road anomalies using two unique features obtained from the filtered wavelet coefficients to differentiate potholes from bumps. The findings from several comparative tests suggest that our algorithm successfully detects and characterizes road anomalies with high levels of accuracy, precision and low false alarm rates as compared to other known methods.
FANET optimization: a destination path flow model Bashir Olaniyi Sadiq; A. T. Salawudeen
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 4: August 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (791.947 KB) | DOI: 10.11591/ijece.v10i4.pp4381-4389

Abstract

Closed-loop routing in flying ad hoc networks (FANET) arises as a result of the quick changes of communication links and topology. As such, causing link breakage during information dissemination. This paper proposed a destination path flow model to improve the communication link in FANET. The models utilized Smell Agent Optimization and Particle Swarm Optimization algorithms in managing link establishment between communicating nodes. The modeled scenario depicts the practical application of FANET in media and sports coverage where only one vendor is given the license for live coverage and must relay to other vendors. Three different scenarios using both optimization Algorithms were presented. From the result obtained, the SAO optimizes the bandwidth costs much better than PSO with a percentage improvement of 10.46%, 4.04% and 3.66% with respect to the 1st, 2nd and 3rd scenarios respectively. In the case of communication delay between the FANET nodes, the PSO has a much better communication delay over SAO with percentage improvement of 40.89%, 50.26% and 68.85% in the first, second and third scenarios respectively.
Interface protocol design: a communication guide for indoor FANET B.O. Sadiq; A. T. Salawudeen; Y. A. Sha’aban; E. A. Adedokun; M. B. Mu’azu
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 6: December 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i6.13296

Abstract

The present and the future routing protocols in relation to the high throughput requirement, adaptivity to fast-changing link topology and speed makes the choice of routing protocol for unmanned aerial vehicle communication important. Due to this fact, an efficient routing protocol is highly dependent on the nature of the communication link. A flexible solution that presents these features is the use of light fidelity as a communication medium. Therefore, this paper presents the design of an interface protocol for indoor Flying Ad-hoc Network specific routing protocol using light fidelity as a communication link. The interface protocol governs communication when UAV move in a swarm. The architecture, the state machine model is discussed in this paper. Results of the design are validated via simulation using the NS3 in terms of packet delivery ratio and throughput.