Z. Zakaria
Universiti Teknikal Malaysia Melaka (UTeM)

Published : 14 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 10 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Accurate characterizations of material using microwave T-resonator for solid sensing applications Rammah A. Alahnomi; Z. Zakaria; Zulkalnain Mohd Yussof; Tole Sutikno; H. Sariera; Amyrul Azuan Mohd Bahar
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 1: February 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i1.14880

Abstract

The topic of microwave sensors in enclosures is one of the most active areas in material characterization research today due to its wide applications in various industries. Surprisingly, a microwave sensor technology has been comprehensively investigated and there is an industry demand for an accurate instrument of material characterization such as food industry, quality control, chemical composition analysis and bio-sensing. These accurate instruments have the ability to understand the properties of materials composition based on chemical, physical, magnetic, and electric characteristics. Therefore, a design of the T-resonator has been introduced and investigated for an accurate measurement of material properties characterizations. This sensor is designed and fabricated on a 0.787 mm-thickness Roger 5880 substrate for the first resonant frequency to resonate at 2.4 GHz under unloaded conditions. Various standard dielectric of the sample under test (SUT) are tested to validate the sensitivity which making it a promising low-cost, compact in size, ease of fabrication and small SUT preparation for applications requiring novel sensing techniques in quality and control industries.
Electronically controlled radiation pattern leaky wave antenna array for (C band) application Mowafak K. Mohsen; M. S. M. Isa; Z. Zakaria; A. A. M. Isa; M. K. Abdulhameed; Mothana L. Attiah; Ahmed M. Dinar
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 2: April 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i2.11126

Abstract

This paper provides an insight of a new, leaky-wave antenna (LWA) array. It holds the ability to digitally steer its beam at a fixed frequency by utilizing only two state of bias voltage. This is done with acceptable impedance matching while scanning and very little gain variation. Investigation is carried out on LWAs’ control radiation pattern in steps at a fixed frequency via PIN diodes switches. This study also presents a novel half-width microstrip LWA (HWMLWA) array. The antenna is made up of the following basic structures: two elements and reconfigurable control cell with each being comprised of two diodes and two triangle patches. A double gap capacitor in each unit cell is independently disconnected or connected via PIN diode switch to achieve fixed-frequency control radiation pattern. The reactance profile at the microstrip’s free edge and thus the main beam direction is changed once the control-cell states are changed. The main beam may be directed by the antenna between 61o and 19o at 4.2 GHz. C band achieved the measured peak gain of the antenna of 15 dBi at 4.2 GHz beam scanning range.
Enhanced symmetrical split ring resonator for metallic surface crack detection Rammah A. Alahnomi; Z. Zakaria; Zulkalnain Mohd Yussof; Tole Sutikno; Ammar Alhegazi; Ahmed Ismail Abu-Khadrah
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i4.12939

Abstract

An enhanced sensor based on symmetrical split ring resonator (SSRR) functioning at microwave frequencies has been proposed in order to detect and characterize the metal crack of the materials. This sensor is based on perturbation theory, in which the dielectric properties of the material affect the quality factor and resonance frequency of the microwave resonator. Conventionally, coaxial cavity, waveguide, dielectric resonator techniques have been used for characterizing materials. However, these techniques are often large, and expensive to build, which restricts their use in many important applications. Thus, the enhanced bio-sensing technique presents advantages such as high measurement sensitivity with the capability of suppressing undesired harmonic spurious and permits potentially metal crack material detection. Hence, using a High Frequency Structure Simulator (HFSS) software, the enhanced sensor is modeled and the reflection S11 is performed for testing the aluminum metal with crack and without crack at the frequency range of 100 MHz to 3GHz. Variation of crack width and depth has been investigated and the most obvious finding emerged from this study is that the ability of detecting a minimum of sub-millimeter crack width and depth which is a round 10 ????m width or depth where the minimum shift of reflected frequency is recorded at 6.2 MHz and 3 MHz for crack width and depth respectively. The enhanced SSRR provides high capability of detecting small crack defection by utilizing the interaction between coupled gap resonators and it is useful for various applications such as aircraft fuselages, nuclear power plant steam generator tubing, and steel bridges and for others that can be compromised by metal fatigue.
Design and development broadband monopole antenna for in-door application Ali Abdulateef Abdulbari; Z. Zakaria; Sharul Kamal Abdul Rahim; Yaqthan Mahmood Hussein; Mustafa Mohammed Jawad; Ayad Muslim Hamzah
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 1: February 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i1.13171

Abstract

This paper describes the broadband monopole antenna refers to a signal wideband of the frequencies, which can be divided the signal into channels of the frequency bins.  Aim this paper to design and development broadband monopole antenna. The monopole antenna was designed by adding slot to the radiated patch antenna with a single feed line, which reduced the size and the design complexity. A rectangular patch antenna was presented using feed line to decrease the ground plane with a suitable gap distance. The broadband monopole antenna was designed with a frequency range of 800 MHz–3 GHz, with Bandwidth 0.66(dB), reflection coefficients and return loss. The frequency-dependent characteristic impedance was included. It can be used in various broadband applications in used commercially for various communication systems such as 4G (LTE), WiMAX and WLAN (LTE), remote sensing, biomedical, and mobile wireless. Apart from that, this technology is environment-friendly; an antenna which consists of reception and transmission. The antenna is simulated by using computer simulation (CST) software; a low cost of 4.4 permittivity FR-4 substrate is used. The measurement result is accepted with simulation result, proving the acceptable broadband operation for this proposed structure.
Analysis of switching and matching stubs in reconfigurable power divider with SPDT switch function N. Edward; N. A. Shairi; Z. Zakaria; I. D. Saiful Bahri
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 1: February 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i1.11714

Abstract

In this paper, performance analysis of switching and matching stubs was done to a reconfigurable power divider with Single Pole Double Throw (SPDT) switch function. Two designs (Design A and Design B) with different positions of switches and matching stubs were proposed. Rogers RO4350 (er=3.48, h=0.508 mm) was used in this analysis as a substrate material with copper thickness of 0.035 mm. The performance analysis was carried out based on insertion loss, return loss and isolation parameters. The simulated results showed that Design B had a better performance than Design A and was able to work as a reconfigurable power divider with SPDT switch function.
Novel design of triple-bands EBG M. K. Abdulhameed; M. S. Mohamad Isa; Z. Zakaria; I. M. Ibrahim; Mowafak K. Mohsen; Ahmed M. Dinar; Mothana L. Attiah
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i4.12616

Abstract

This paper presents a novel design for a triple band electromagnetic band gap (EBG) structures that provides three band gaps, with operating frequency of below 10 GHz, while the ordinary mushroom like EBG structure gives only one band gap. Complexity reduction (reduce the number of unit cells and Vias) was achieved by replacing each four cells of the Mushroom like EBG by the one of double slotted type EBG (DSTEBG) or triple side slotted EBG (TSSEBG). The Mushroom like EBG was further modified by increasing its size and inserting the slots to gain more capacitance and inductance which resulted into triple band stop.The new designs wer compared with bandwidths expressed by other EBGs and -20 dB cut-off frequencies. The size of EBG element and the gap between EBG elements, and slot width were investigated to analyse their effect on the transmission response. The structures were designed from 2.54 mm Rogers RT/Duroid 6010 substrate with relative permittivity of 10.2 and loss tangent of 0.0023. Among the investigated EBGs, the single band mushroom like EBG and the triple band of the TSSEBG demonstrated better bandwidth and lower resonance frequency performance, whereas the DSTEBG showed larger bandwidth for the first and third band. The proposed EBGs could be useful in the antenna design and other microwave circuits.
Controlling The Radiation Pattern of Patch Antenna Using Switchable EBG M.K. Abdulhameed; M.S. Mohamad Isa; Z. Zakaria; M.K. Mohsin
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 5: October 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i5.10443

Abstract

The advantages of the beam steering technique are the reduction of interference, save power and to maximize connectivity for point to multi points. Antenna gain degradation is a big problem in the beam steering technique. A new antenna structure is formed by combining the concept of mushroom-like EBG structure with the switching diode to produce the radation pattern control. All sides of the patch antenna are surrounded by several cells for EBG structure. In both of the the left and right sides, through a switching pin diode, the ground plane is attached to vias. The band-stop and band-pass properties of the EBG sector can be changed with the help of switching the diode between ON and OFF state, thus yielding the beam steering into that particular sector. At 6 GHz operational frequency, this structure has the ability to steer 40º (from -20º to +20º) while minimal diodes are utilized, directivity of 10 dBi, gain 9.86 dB and the efficiency is 96.5%. This approach is robust to gain degradation and the main lobe gain is approximately constant for all steering angles.
Review on fixed-frequency beam steering for leaky wave antenna J. S. Kasim; M. S. M. Isa; Z. Zakaria; M. I. Hussein; Mowafak K. Mohsen
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 6: December 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i6.13291

Abstract

This paper aims to survey the efforts of researchers in response to the novel and effective technology of control radiation pattern at a fixed frequency for leaky wave antenna (LWA), map the research landscape from the literature onto coherent taxonomy and determine the basic properties of this potential field. In addition, this paper investigates the motivation behind using beam steering in LWA and the open challenges that impede the utility of this antenna design. This paper offers valuable recommendations to improve beam steering in LWA. The review revealed the development and improvement of several techniques of beam scanning LWA. However, several areas or aspects require further attention. All the articles, regardless of their research focus, attempt to address the challenges that impede the full utility of beam scanning and offer recommendations to mitigate their drawbacks. This paper contributes to this area of research by providing a detailed review of the available options and problems to allow other researchers and participants to further develop beam scanning. The new directions for this research are also described.
A coupled-line balun for ultra-wideband single-balanced diode mixer M. Y. Algumaei; N. A. Shairi; Z. Zakaria; A. M. Zobilah; N. Edward
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 1: February 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i1.11607

Abstract

A multi-section coupled-line balun design for an ultra-wideband diode mixer is presented in this paper. The multi-section coupled-line balun was used to interface with the diode mixer in which it can deliver a good impedance matching between the diode mixer and input/output ports. The mixer design operates with a Local Oscillator (LO) power level of 10 dBm, Radio Frequency (RF) power level of -20 dBm and Intermediate Frequency (IF) of 100 MHz with the balun characteristic of 180° phase shift over UWB frequency (3.1 to 10.6 GHz), the mixer design demonstrated a good conversion loss of -8 to -16 dB over the frequency range from 3.1 to 10.6 GHz. Therefore, the proposed multi-section coupled-line balun for application of UWB mixer showed a good isolation between the mixer’s ports.
Determination of solid material permittivity using T-ring resonator for food industry Rammah A. Alahnomi; Z. Zakaria; Zulkalnain Mohd Yussof; Tole Sutikno; Amyrul Azuan Mohd Bahar; Ammar Alhegazi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 1: February 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i1.11636

Abstract

In this paper, we present a simple design of a T-ring resonator sensor for characterizing solid detection.  The sensor is based on a planar microwave ring resonator and operating at 4.2 GHz frequency with a high-quality factor and sensitivity. An optimization of the T-ring geometry and materials were made to achieve high sensitivity for microwave material characterizations. This technique can determine the properties of solid materials from range of 2 GHz to 12 GHz frequencies. Techniques of current microwave resonator are usually measuring the properties of material at frequencies with a wide range; however, their accuracy is limited. Contrary to techniques that have a narrowband which is normally measuring the properties of materials to a high-accuracy with limitation to only a single frequency. This sensor has a capability of measuring the properties of materials at frequencies of wide range to a high-accuracy. A good agreement is achieved between the simulated results of the tested materials and the values of the manufacturer’s Data sheets. An empirical equation has been developed accordingly for the simulated results of the tested materials. Various standard materials have been tested for validation and verification of the sensor sensitivity. The proposed concept enables the detection and characterization of materials and it has miniaturized the size with low cost, reusable, reliable, and ease of design fabrication with using a small size of tested sample. It is inspiring a broader of interest in developing microwave planar sensors and improving their applications in food industry, quality control and biomedical materials.