Ahmad Firdaus Zainal Abidin
Universiti Malaysia Pahang

Published : 8 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Self-organizing map (SOM) for species distribution modelling of birds species at Kenyir landscape Salwana Mohamad Asmara; Gertrude David; Mohd Tajuddin Abdullah; Wan Isni Sofiah Wan Din; Danakorn Nincarean a/l Eh Phon; Ahmad Firdaus Zainal Abidin
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 6: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (948.413 KB) | DOI: 10.11591/ijece.v9i6.pp5235-5243

Abstract

Identifying which biodiversity species are more dominant than others in any area is a very challenging task. This is because of the abundant of biodiversity species that may become the majority species in any particular region. This situation create a large dataset with a complex variables to be analysed. Moreover, the responds of organisms and environmental factors are occurred in a non-linear correlation. The effort to do so is really important in order to conserve the biodiversity of nature. To understand the complex relationships that exist between species distribution and their habitat, we analysed the interactions among bird diversity, spatial distribution and land use types at Kenyir landscape in Terengganu, Malaysia by using artificial neural network (ANN) method of self-organizing map (SOM) analysis. SOM performs an unsupervised and non-linear analysis on a complex and large dataset. It is capable to handle the non-linear correlation between organism and environmental factors because SOM identifies clusters and relationships between variables without the fixed assumptions of linearity or normality. The result suggested that SOM analysis was suited for understanding the relationships between bird species assemblages and habitat characteristics.
Random forest age estimation model based on length of left hand bone for Asian population Mohd Faaizie Darmawan; Ahmad Firdaus Zainal Abidin; Shahreen Kasim; Tole Sutikno; Rahmat Budiarto
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (625.495 KB) | DOI: 10.11591/ijece.v10i1.pp549-558

Abstract

In forensic anthropology, age estimation is used to ease the process of identifying the age of a living being or the body of a deceased person. Nonetheless, the specialty of the estimation models is solely suitable to a specific people. Commonly, the models are inter and intra-observer variability as the qualitative set of data is being used which results the estimation of age to rely on forensic experts. This study proposes an age estimation model by using length of bone in left hand of Asian subjects range from newborn up to 18-year-old. One soft computing model, which is Random Forest (RF) is used to develop the estimation model and the results are compared with Artificial Neural Network (ANN) and Support Vector Machine (SVM), developed in the previous case studies. The performance measurement used in this study and the previous case study are R-square and Mean Square Error (MSE) value. Based on the results produced, the RF model shows comparable results with the ANN and SVM model. For male subjects, the performance of the RF model is better than ANN, however less ideal than SVM model. As for female subjects, the RF model overperfoms both ANN and SVM model. Overall, the RF model is the most suitable model in estimating age for female subjects compared to ANN and SVM model, however for male subjects, RF model is the second best model compared to the both models. Yet, the application of this model is restricted only to experimental purpose or forensic practice.