Mohd Faaizie Darmawan
Universiti Malaysia Pahang

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Random forest age estimation model based on length of left hand bone for Asian population Mohd Faaizie Darmawan; Ahmad Firdaus Zainal Abidin; Shahreen Kasim; Tole Sutikno; Rahmat Budiarto
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (625.495 KB) | DOI: 10.11591/ijece.v10i1.pp549-558

Abstract

In forensic anthropology, age estimation is used to ease the process of identifying the age of a living being or the body of a deceased person. Nonetheless, the specialty of the estimation models is solely suitable to a specific people. Commonly, the models are inter and intra-observer variability as the qualitative set of data is being used which results the estimation of age to rely on forensic experts. This study proposes an age estimation model by using length of bone in left hand of Asian subjects range from newborn up to 18-year-old. One soft computing model, which is Random Forest (RF) is used to develop the estimation model and the results are compared with Artificial Neural Network (ANN) and Support Vector Machine (SVM), developed in the previous case studies. The performance measurement used in this study and the previous case study are R-square and Mean Square Error (MSE) value. Based on the results produced, the RF model shows comparable results with the ANN and SVM model. For male subjects, the performance of the RF model is better than ANN, however less ideal than SVM model. As for female subjects, the RF model overperfoms both ANN and SVM model. Overall, the RF model is the most suitable model in estimating age for female subjects compared to ANN and SVM model, however for male subjects, RF model is the second best model compared to the both models. Yet, the application of this model is restricted only to experimental purpose or forensic practice.
Adaboost-multilayer perceptron to predict the student’s performance in software engineering Ahmad Firdaus Zainal Abidin; Mohd Faaizie Darmawan; Mohd Zamri Osman; Shahid Anwar; Shahreen Kasim; Arda Yunianta; Tole Sutikno
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (496.113 KB) | DOI: 10.11591/eei.v8i4.1432

Abstract

Software Engineering (SE) course is one of the backbones of today's computer technology sophistication. Effective theoretical and practical learning of this course is essential to computer students. However, there are many students fail in this course. There are many aspects that influence a student's performance. Currently, student performance analysis methods just focus on historical achievement and assessment methods given in the class. Need more research to predict student's performance to overcome the problem of student failing. The objective of this research is to perform a prediction for student's performance in the SE using enhanced Multilayer Perceptron (MLP) machine learning classification with Adaboost. This research also investigates the requirements of each student before registering in this course. This research achieved 87.76 percent accuracy in classifying the performance of SE students.
Adaboost-multilayer perceptron to predict the student’s performance in software engineering Ahmad Firdaus Zainal Abidin; Mohd Faaizie Darmawan; Mohd Zamri Osman; Shahid Anwar; Shahreen Kasim; Arda Yunianta; Tole Sutikno
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (496.113 KB) | DOI: 10.11591/eei.v8i4.1432

Abstract

Software Engineering (SE) course is one of the backbones of today's computer technology sophistication. Effective theoretical and practical learning of this course is essential to computer students. However, there are many students fail in this course. There are many aspects that influence a student's performance. Currently, student performance analysis methods just focus on historical achievement and assessment methods given in the class. Need more research to predict student's performance to overcome the problem of student failing. The objective of this research is to perform a prediction for student's performance in the SE using enhanced Multilayer Perceptron (MLP) machine learning classification with Adaboost. This research also investigates the requirements of each student before registering in this course. This research achieved 87.76 percent accuracy in classifying the performance of SE students.
Adaboost-multilayer perceptron to predict the student’s performance in software engineering Ahmad Firdaus Zainal Abidin; Mohd Faaizie Darmawan; Mohd Zamri Osman; Shahid Anwar; Shahreen Kasim; Arda Yunianta; Tole Sutikno
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (496.113 KB) | DOI: 10.11591/eei.v8i4.1432

Abstract

Software Engineering (SE) course is one of the backbones of today's computer technology sophistication. Effective theoretical and practical learning of this course is essential to computer students. However, there are many students fail in this course. There are many aspects that influence a student's performance. Currently, student performance analysis methods just focus on historical achievement and assessment methods given in the class. Need more research to predict student's performance to overcome the problem of student failing. The objective of this research is to perform a prediction for student's performance in the SE using enhanced Multilayer Perceptron (MLP) machine learning classification with Adaboost. This research also investigates the requirements of each student before registering in this course. This research achieved 87.76 percent accuracy in classifying the performance of SE students.