Mohammad H. Alomari
Applied Science Private University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

PVPF tool: an automatedWeb application for real-time photovoltaic power forecasting Mohammad H. Alomari; Jehad Adeeb; Ola Younis
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 1: February 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2297.823 KB) | DOI: 10.11591/ijece.v9i1.pp34-41

Abstract

In this paper, we propose a fully automated machine learning based forecasting system, called Photovoltaic Power Forecasting (PVPF) tool, that applies optimised neural networks algorithms to real-time weather data to provide 24 hours ahead forecasts for the power production of solar photovoltaic systems installed within the same region. This system imports the real-time temperature and global solar irradiance records from the ASU weather station and associates these records with the available solar PV production measurements to provide the proper inputs for the pre-trained machine learning system along with the records’ time with respect to the current year. The machine learning system was pre-trained and optimised based on the Bayesian Regularization (BR) algorithm, as described in our previous research, and used to predict the solar power PV production for the next 24 hours using weather data of the last five consecutive days. Hourly predictions are provided as a power/time curve and published in real-time at the website of the renewable energy center (REC) of Applied Science Private University (ASU). It is believed that the forecasts provided by the PVPF tool can be helpful for energy management and control systems and will be used widely for the future research activities at REC.
Solar Photovoltaic Power Forecasting in Jordan using Artificial Neural Networks Mohammad H. Alomari; Jehad Adeeb; Ola Younis
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 1: February 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3689.136 KB) | DOI: 10.11591/ijece.v8i1.pp497-504

Abstract

In this paper, Artificial Neural Networks (ANNs) are used to study the correlations between solar irradiance and solar photovoltaic (PV) output power which can be used for the development of a real-time prediction model to predict the next day produced power. Solar irradiance records were measured by ASU weather station located on the campus of Applied Science Private University (ASU), Amman, Jordan and the solar PV power outputs were extracted from the installed 264KWp power plant at the university. Intensive training experiments were carried out on 19249 records of data to find the optimum NN configurations and the testing results show excellent overall performance in the prediction of next 24 hours output power in KW reaching a Root Mean Square Error (RMSE) value of 0.0721. This research shows that machine learning algorithms hold some promise for the prediction of power production based on various weather conditions and measures which help in the management of energy flows and the optimisation of integrating PV plants into power systems.