Novia Rita
Petroleum Engineering Department, Engineering Faculty, Universitas Islam Riau Jl. Kaharuddin Nasution 113 Pekanbaru, Riau, 28284 Indonesia

Published : 10 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Geoscience, Engineering, Environment, and Technology

Analyzing The Statistics Function For Determination Of Oil Flow Rate Equation in New Productive Zone Ira Herawati; Novia Rita; Novrianti Novrianti; Rosalia M Taufand
Journal of Geoscience, Engineering, Environment, and Technology Vol. 2 No. 1 (2017): JGEET Vol 02 No 01 : March (2017)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (620.583 KB) | DOI: 10.24273/jgeet.2017.2.1.34

Abstract

Oil rate will be decline at production time in a well. So, we have to produce in another layer who assume have a potential. Before we produce another layer who assumed have a potential, we need to predict oil rate to known how much oil gain. In this field research oil rate prediction in new productive zone was determine following by analogical data and near well references. In this method there is a difference determine of oil rate for each people. Cause of that, in this research using analysis statistical for oil rate predicting in new productive zone based on linear function for Productivity Index (PI) and polynomial function for watercut. Determining equation of linear and polynomial functions for oil rate prediction measuring by production and logging data for each well who assumed productive zone in area X field RMT. Based of statistically analysis for linear function known that coefficient determination (r2) = 0.9964 and polynomial function known that coefficient determination (r2) = 0.9993. This result indicated that we can use both of the functions for oil rate prediction in new productive zone in area X field RMT. After that, based on both of functions calculate oil rate prediction each wells in area X field RMT. So, known differences in oil rate prediction between oil rate data in area X field Y known is 28.13 BOPD or 0.78%.
The Key Parameter Effect Analysis Of Polymer Flooding On Oil Recovery Using Reservoir Simulation Tomi Erfando; Novia Rita; Romal Ramadhan
Journal of Geoscience, Engineering, Environment, and Technology Vol. 4 No. 1 (2019): JGEET Vol 04 No 01 : March (2019)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (844.309 KB) | DOI: 10.25299/jgeet.2019.4.1.2107

Abstract

As time goes by, there will be decreasing of production rates of a field along with decreasing pressure. This led to the necessity for further efforts to increase oil production. Therefore, pressure support is required to improve the recovery factor. Supportable pressure that can be used can be either water flooding and polymer flooding. This study aims to compare recovery factor to scenarios carried out, such as polymer flooding with different concentrations modeled in the same reservoir model to see the most favorable scenario. The method used in this research is reservoir simulation method with Computer Modeling Group (CMG) STARS simulator. The study was carried out by observing at the pressure, injection rate, and polymer concentration on increasing field recovery factor. This study used cartesian grid with the assumption of homogeneous reservoir, there are no faults or other geological condition in the reservoir, and driving mechanism is only solution gas drive. This reservoir, oil type is light oil with API gravity 40.3˚API and layer of conglomerate rock. The simulation result performed with various scenarios provides a good result. Where the conditions case base case field recovery factor of 6.7%, and after water flooding produced 25.5% of oil, whereas with tertiary recovery method is polymer flooding was carried out with four concentrations of 640 ppm, 1,500 ppm, 3,000 ppm, and 4,000 ppm obtained optimum values at 4,000 ppm polymer concentration with recovery factor 28.9%, SOR reduction final value 0,5255, polymer adsorption of 818,700 ppm, reservoir final pressure 1,707 psi, and an increase in water viscosity to 0.94 cP.