Noureddine El Barbri
Sultan Moulay Slimane University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Classification of potatoes according to their cultivated field by SVM and KNN approaches using an electronic nose Ali Amkor; Noureddine El Barbri
Bulletin of Electrical Engineering and Informatics Vol 12, No 3: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i3.5116

Abstract

In this article, we propose a homemade electronic nose to distinguish between two types of potatoes: the first type is traditionally treated with donkey and sheep manure, and the other type is treated with chicken manure. The proposed tool consists of a network of commercial metal oxide sensors, a data acquisition card, and a personal computer for data pre-processing and processing. Two methods were used, namely, support vector machines (SVM) and k-nearest neighbors (KNN) with 5-fold cross-validation and which achieved the same success rate of 97.5%. These results demonstrate that our concept, which is quick, simple, and inexpensive, can discriminate between potatoes based on the method of fertilization used in the field.