Hadi Jumaat
Universiti Teknologi Mara

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Metal Mountable Ladder Feed Line UHF-RFID Tag Antenna Najwa Mohd Faudzi; Mohd Tarmizi Ali; Ismarani Ismail; Hadi Jumaat; Nur Hidayah Mohd Sukaimi
International Journal of Electrical and Computer Engineering (IJECE) Vol 5, No 4: August 2015
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1113.088 KB) | DOI: 10.11591/ijece.v5i4.pp750-758

Abstract

A microstrip dipole UHF-RFID tag antenna that can be mounted on metal object is presented in this paper. The antenna, which has a very simple structure without any shorting pin and shorting plate, is composed of ladder feed line, rectangular loop, capacitive tip-loading and T-match structure. The insertion of ground plane in the tag antenna design reduces the negative impact of metal object to the performance of the tag antenna. The tag is designed to operate in the Malaysia frequency range with the center frequency of 921 MHz. The performance of the tag is evaluated through simulation and measurement in terms of impedance matching, antenna reflection coefficient and tag reading range. The measured reading range obtained when the tag is in free air and on metal object is 2.3 m and 2.2 m respectively.
Developed high gain microstrip antenna like microphone structure for 5G application H. Yon; N. H. Abd Rahman; M. A. Aris; Hadi Jumaat
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1161.969 KB) | DOI: 10.11591/ijece.v10i3.pp3086-3094

Abstract

We present a new development of microstrip antenna structure combining a simple circular structure with a ring antenna structure as the parasitic element to improve the antenna gain and bandwidth for 5G mobile application. The proposed antenna was fed by a 50Ω microstrip feeding line due to its advantages in performance. The antenna was designed and simulated using a single substrate with double layered copper (top and bottom) with the radiating patch on the top layer and full ground on the bottom layer of the same substrate. Three antennas have been designed namely; design1, design2 and design3 to complete the research works.The antennas ware simulated and optimized at 18 GHz using Computer Simulation Technology (CST) with permittivity, r = 2.2 and thickness, h = 1.57mm on low-loss material Roger RT-Duroid 5880 substrate. The antennas ware reasonably well matched at their corresponding frequency of operations. The simulation and measurement results have shown that the antenna works well. The simulation results have shown that the three antennas works well at the selected frequency. The final simulated antenna for design1, design2 and design3 has been fabricated to measure the performance and also to validate the simulation result with the measurement result. The measurement data for antenna design1, design2 and design3 shows frequency shift of 3% from the simulation result. The final protype of design3 gives 6.6dB gain, -14.51dB return loss, 180MHz bandwidth, and antenna efficiency of 53.9%. All three antennas ware measured using Vector network analyzer (VNA) and Anechoic chamber.