Claim Missing Document
Check
Articles

Found 2 Documents
Search

Real Time Implementation of Fuzzy Adaptive PI-sliding Mode Controller for Induction Machine Control Mohamed Habbab; Abdeldjebar Hazzab; Pierre Sicard
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 5: October 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (531.347 KB) | DOI: 10.11591/ijece.v8i5.pp2883-2893

Abstract

In this work, a fuzzy adaptive PI-sliding mode control is proposed for Induction Motor speed control. First, an adaptive PI-sliding mode controller with a proportional plus integral equivalent control action is investigated, in which a simple adaptive algorithm is utilized for generalized soft-switching parameters. The proposed control design uses a fuzzy inference system to overcome the drawbacks of the sliding mode control in terms of high control gains and chattering to form a fuzzy sliding mode controller. The proposed controller has implemented for a 1.5kW three-Phase IM are completely carried out using a dSPACE DS1104 digital signal processor based real-time data acquisition control system, and MATLAB/Simulink environment. Digital experimental results show that the proposed controller can not only attenuate the chattering extent of the adaptive PI-sliding mode controller but can provide high-performance dynamic characteristics with regard to plant external load disturbance and reference variations. 
Reduced-order observer for real-time implementation speed sensorless control of induction using RT-LAB software Mansour Bechar; Abdeldjebar Hazzab; Mohamed Habbab; Pierre Sicard
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (534.998 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1148-1156

Abstract

In this paper, Reduced-Order Observer For Real-Time Implementation Speed Sensorless Control of Induction Using RT-LAB Softwareis presented. Speed estimation is performed through a reduced-order observer. The stability of the proposed observer is proved based on Lyapunov’s theorem. The model is initially built offline using Matlab/Simulink and implemented in real-time environment using RT-LAB package and an OP5600 digital simulator. RT-LAB configuration has two main subsystems master and console subsystems. These two subsystems were coordinated to achieve the real-time simulation. In order to verify the feasibility and effectiveness of proposed method, experimental results are presented over a wide speed range, including zero speed.