Nithiyananthan Kannan
King Abdulaziz University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Bacterial foraging optimization based adaptive neuro fuzzy inference system C. Arul Murugan; G. Sureshkumaar; Nithiyananthan Kannan; Sunil Thomas
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 4: August 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1032.957 KB) | DOI: 10.11591/ijece.v10i4.pp3568-3575

Abstract

Life of human being and animals depend on the environment which is surrounded by plants. Like human beings, plants also suffer from lot of diseases. Plant gets affected by completely including leaf, stem, root, fruit and flower; this affects the normal growth of the plant. Manual identification and diagnosis of plant diseases is very difficult. This method is costly as well as time-consuming so it is inefficient to be highly specific. Plant pathology deals with the progress in developing classification of plant diseases and their identification. This work clarifies the identification of plant diseases using leaf images caused by bacteria, viruses and fungus. By this method it can be identified and control the diseases. To identify the plant leaf disease Adaptive Neuro Fuzzy Inference System (ANFIS) was proposed. The proposed method shows more refined results than the existing works.
Implementation effects of economics and market operations based model for traditionally integrated power systems Youssef Mobarak; Nithiyananthan Kannan; Fahd Alharbi; Faisal Albatati
Indonesian Journal of Electrical Engineering and Computer Science Vol 21, No 3: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v21.i3.pp1247-1255

Abstract

The main objective of this paper is to introduce power system economic operations in traditionally integrated power systems and market operations in deregulated power systems and study its effects. The power system economic operation is mathematically treated as an optimization problem. Also, a function of economic operation is to minimize generation cost, transmission losses, and so on, subject to power system operation constraints. In this paper, we start from generation cost formulations and introduce traditional economic dispatch model, optimal power flow model, and unit commitment model. With the deregulation of the power industry, integrated power system is unbundled to generation, transmission, and distribution. Electricity is traded in the wholesale market. Small customers purchase energy from electricity retailers through the retail market. The electricity market is operated for energy trading while satisfying power system operation requirements. Electricity market is mathematically modelled as an optimization problem that is subject to power system operation constraints and market operation constraints.