Minh Chau Huu Nguyen
VSB-Technical University of Ostrava

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

A robust diagnosis method for speed sensor fault based on stator currents in the RFOC induction motor drive Cuong Dinh Tran; Pavel Brandstetter; Minh Chau Huu Nguyen; Sang Dang Ho; Bach Hoang Dinh; Phuong Nhat Pham
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (777.425 KB) | DOI: 10.11591/ijece.v10i3.pp3035-3046

Abstract

A valid diagnosis method for the speed sensor failure (SSF) is an essential requirement to ensure the reliability of Fault-Tolerant Control (FTC) models in induction motor drive (IMD) systems. Most recent researches have focused on directly comparing the measured and estimated rotor speed signal to detect the speed sensor fault. However, using that such estimated value in both the fault diagnosis and the controller reconfiguration phases leads to the insufficient performance of FTC modes. In this paper, a novel diagnosis-technique based on the stator current model combined with a confusion prevention condition is proposed to detect the failure states of the speed sensor in the IMD systems. It helps the FTC mode to separate between the diagnosis and reconfiguration phases against a speed sensor fault. This proposed SSF diagnosis method can also effectively apply for IMs’ applications at the low-speed range where the speed sensor signal often suffers from noise. MATLAB/Simulink software has been used to implement the simulations in various speed ranges. The achieved results have demonstrated the capability and effectiveness of the proposed SSF method against speed sensor faults.