Awingot Richard Akparibo
Ashesi University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Application of resistance energy model to optimising electric power consumption of a belt conveyor system Awingot Richard Akparibo; Erwin Normanyo
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1564.689 KB) | DOI: 10.11591/ijece.v10i3.pp2861-2873

Abstract

Driven by constantly increasing energy demands, prices, environmental impact caused by carbon dioxide emissions and global warming, efficient use of energy is gaining grounds in both public and private enterprises. The energy consumption of belt conveyors can be lowered using energy modelling techniques. In this research, a resistance-based mathematical energy model was utilised in the electrical energy efficiency optimisation of the troughed, inclined belt conveyor system taking into account indentation rolling resistance, bulk solid flexure resistance and secondary resistance as they together contribute 89% resistance to motion. An optimisation problem was formulated to optimise the electrical energy efficiency of the belt conveyor system and subsequently solved using the “fmincon” solver and interior point algorithm of the MATLAB optimisation toolbox. Analysis of simulation results showed that for the same given operating capacities, an average energy saving of about 7.42% and an annual total cost savings of Gh¢ 5, 852, 669.00 (USD 1, 083, 827.59) for a 2592-hour operation can be achieved when the used model and optimisation technique are employed over the constant speed operation.