Claim Missing Document
Check
Articles

Found 4 Documents
Search

Simulation model of 3-phase PWM rectifier by using MATLAB/Simulink Salam Waley Shneen; Ghada Adel Aziz
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i5.pp3736-3746

Abstract

Many industrial applications require the use of power electronic devices, which in turn help in overcoming the problems of variable load and fluctuations that occur at the end of feeding. The current study emphasizes that the use of different electric power generation systems with industrial applications needs control devices to work on improving the power quality and performance of systems in which there is an imbalance in the voltage or current due to the change of loads or feeding from the source. The present study also presents a model of a transformer widely used in industrial applications and this work includes simulating a three-phase rectifier by MATLAB. There are four cases in this work HWR (uncontrolled and controlled) and FWR (uncontrolled and uncontrolled) with different loads (R, RL & RC) including full wave type AC/DC using six electronic transformer silicon control rectifier (SCRs) once as well as unified half wave using three electronic transformer silicon control rectifier (SCRs). Simulation results include input, output voltage, and current with the waveform.
Simulation Model of Servo Motor by Using Matlab Fatin Nabeel Abdullah; Ghada Adel Aziz; Salam Waley Shneen
Journal of Robotics and Control (JRC) Vol 3, No 2 (2022): March
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i2.13959

Abstract

The research aims to develop documented empirical data to obtain a high-accuracy and effective system according to a principal system as a model that represents the system for all expected cases and different working conditions. The current works are simulating a servo motor that works with specifications as a mathematical representation of it down to its representation with a transformation function. The simulation is done for different cases, the first is without a controller, and the other is an operation simulation with a conventional controller that is with a PID controller. The results, through response and accuracy, prove the preference of PID controller systems in the speed of response and high accuracy with the change or different conditions of the system, i.e., working with linear systems. A simulation is being conducted to verify the use of control systems to improve the performance of servo motors. Algorithms of control systems are developed according to designs based on prior experience. Speed and position control are the most common and used in many applications, which created the need to choose them. To overcome fluctuations and obtain a quick response and a high-precision system used, control systems, as the results proved. The research contribution is developing a design for the user control systems also checking them in simulation with the servo motor system using MATLAB. They test them in the servo motor control as well to test their performance experimentally.
Simulation model of 1-phase pulse-width modulation rectifier by using MATLAB/Simulink Salam Waley Shneen; Ghada Adel Aziz; Fatin Nabeel Abdullah; Dina Harith Shaker
International Journal of Advances in Applied Sciences Vol 11, No 3: September 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1022.872 KB) | DOI: 10.11591/ijaas.v11.i3.pp253-262

Abstract

One of the problems that need to be solved is the difference in the type of nutrition from the load. The feeding may be from a constant current source such as batteries and solar cells, and there are alternating current sources such as diesel machines, wind energy, and various power plants. All of these sources need electronic power devices that help convert and regulate the control and control of the type of feeding on the one hand and its amount on the other. From here, we show the size of the challenge occupied by electronic power transformers, as they are considered the solution to many problems of transmission, distribution, and feeding systems for different loads. The current study sheds light on one of the types of electronic power systems, which is unified. Choosing and suggesting a set of single-phase unifying circuits to conduct simulations and come up with results that are analyzed to show the function of the non-electronic modulators. In the current simulation, tests were carried out for a group of circuits that need direct current (DC) power, and their available source of supply is an alternating current source to different departments to access a set of data that enables researchers to conduct appropriate analyzes to perform them, by discussing those results.
Advanced optimal GWO-PID controller for DC motor Ghada Adel Aziz; Salam Waley Shneen; Fatin Nabeel Abdullah; Dina Harith Shaker
International Journal of Advances in Applied Sciences Vol 11, No 3: September 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (954.561 KB) | DOI: 10.11591/ijaas.v11.i3.pp263-276

Abstract

The current work aims to use traditional control algorithms and advanced optimization algorithms that was chosen for its ease of control and the possibility of using it in many industrial applications. By setting the appropriate specifications for the simulation model and after conducting the planned tests that simulate different applications of the motor’s work within electrical systems, the results proved to obtain good performance of the motor’s work, better response, high accuracy, in addition to the speed. The goal is to design and tune a proportional–integral–derivative (PID) controller by grey wolf optimization (GWO) using transfer function (T.F) for a direct current (DC) motor. To adjust the parameters of the traditional controllers using the optimum advanced, an appropriate mechanism and technology from the advanced optimization techniques were chosen, as the gray wolf technology algorithm was chosen as an optimization technique and integral time absolute error (ITAE) to adjust the parameters of the traditional PID controller.