Claim Missing Document
Check
Articles

Found 2 Documents
Search

Power quality improvement based on hybrid coordinated design of renewable energy sources for DC link channel DSTATCOM Ali Nasser Hussain; Ahmed Jadaan Ali; Firas Saaduldeen Ahmed
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 5: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1639.422 KB) | DOI: 10.11591/ijece.v10i5.pp5108-5122

Abstract

This paper presents a comprehensive analysis of power quality for static synchronous compensator on the distribution power system (DSTATCOM) when a different types of energy sources are used to supply the dc link channel of DSTATCOM. These types of power supplies have a different effect on the compensation of DSTATCOM due to operation nature of these sources. The dynamic response of the DSTATCOM has been investigated that produced by individual and hybrid energy sources to evaluate the influence of these sources in terms of time response, compensation process and reduce the harmonics of current for source. Three cases have been considered in this study. First the photovoltaic (PV) cells alone second the battery storage alone and third a hybrid coordinated design between (PV cells with battery storage) is used. A boost Dc-Dc circuit has been connected to a photovoltaic cell with Maximum Power Point Tracking (MPPT) while a Dc-Dc buck-boost circuit is used with a battery. High coordination between PV and battery circuits in the hybrid system is used in order to improve the performance. A synchronous reference frame (SRF) with unit vector has been used to control the STATCOM circuit. The simulation results show that the hybrid design has the superiority response compared to the individual sources.
Performance evaluation of a hybrid fuzzy logic controller based on genetic algorithm for three phase induction motor drive Ahmed Jadaan Ali; Ziyad Farej; Nashwan Sultan
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (405.238 KB) | DOI: 10.11591/ijpeds.v10.i1.pp117-127

Abstract

It is known that controlling the speed of a three phase Induction Motor (IM) under different operating conditions is an important task and this can be accomplished through the process of controlling the applied voltage on its stator circuit. Conventional Proportional- Integral- Differeantional (PID) controller takes long time in selecting the error signal gain values. In this paper a hybrid Fuzzy Logic Controller (FLC) with Genetic Algorithm (GA) is proposed to reduce the selected time for the optimized error signal gain values and as a result inhances the controller and system performance. The proposed controller FL with GA is designed, modeled and simulated using MATLAB/ software under different load torque motor operating condition. The simulation result shows that the closed loop system performance efficiency under the controller has a maximum value of 95.92%. In terms of efficiency and at reference speed signal of 146.53 rad/sec, this system performance shows an inhancement of 0.67%,0.49% and 0.05% with respect to the closed loop system efficiency performance of the PID, FL, and PID with GA controllers respectively. Also the simulation result of the well designed and efficient GA in speeding up the process of selecting the gain values, makes the system to have an efficiency improvement of 14.42% with respect to the open loop system performance.