Omar Abdul Aziz
Universiti Teknologi Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Adaptive 3D ray tracing approach for indoor radio signal prediction at 3.5 GHz Mohd Nazeri Kamaruddin; Tan Kim Geok; Omar Abdul Aziz; Tharek Abd Rahman; Ferdous Hossain; Azlan Abdul Aziz
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp1617-1625

Abstract

This paper explained an adaptive ray tracing technique in modelling indoor radio wave propagation. As compared with conventional ray tracing approach, the presented ray tracing approach offers an optimized method to trace the travelling radio signal by introducing flexibility and adaptive features in ray launching algorithm in modelling the radio wave for indoor scenarios. The simulation result was compared with measurements data for verification. By analyzing the results, the proposed adaptive technique showed a better improvement in simulation time, power level and coverage in modelling the radio wave propagation for indoor scenario and may benefit in the development of signal propagation simulators for future technologies.
Spatial variations of rain intensity over a short length propagation for 5G links based on a rain gauge network M. Rashid; Jafri Din; Omar Abdul Aziz
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 2: April 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i2.16809

Abstract

Millimeter-wave (mm-wave) frequency range is among operating bands designated for terrestrial 5G networks. A critical challenge of link-budgeting in mm-wave 5G networks is the precise estimation of rain attenuation for short-path links. The difficulties are further amplified in tropical and subtropical regions where the rainfall rate has a higher intensity. Different models have been proposed to predict rain attenuation. The distance factor is an important parameter in predicting total attenuation from specific rain attenuation. This study investigates the distance factor based on rain gauge networks and measured rain attenuation at 26 GHz for a 300 m link in Malaysia. Considerable discrepancies between available models were observed especially when applied for shorter path links. Also, significant variability of rain intensity is observed from the rain gauge network. This study recommends further investigation of the distance factor for a shorter link. Hence, a measurement campaign incorporating rain gauge networks was established to examine spatial variations of rain intensity over a less than 1 km link. The motivation is to develop a suitable distance factor model for 5G mm-wave propagation.