Preeti Gulia
Maharshi Dayanand University

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

Hybrid swarm and GA based approach for software test case selection Palak Palak; Preeti Gulia
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 6: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (298.374 KB) | DOI: 10.11591/ijece.v9i6.pp4898-4903

Abstract

Being a crucial step and deciding factor for software reliability, software testing has evolved a long way and always attracted researchers due to various inherent challenges. The quality of a software application depends on the effectiveness of the testing carried out during development and maintenance phase. Testing is a crucial but time consuming activity that influences the overall cost of software development. Thus a minimal but efficient test suite selection is the need of the hour. This paper presents a hybrid technique based on swarm based search technique and GA (Genetic Algorithm) for selection of promising test cases to reduce the overall development cost and time of the application. We took component based software into consideration as they offer some inherent advantages over traditional software development paradigms.
Different analytical frameworks and bigdata model for Internet of Things Ayushi Chahal; Preeti Gulia; Nasib Singh Gill
Indonesian Journal of Electrical Engineering and Computer Science Vol 25, No 2: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v25.i2.pp1159-1166

Abstract

Sensor devices used in internet of things (IoT) enabled environment produce large amount of data. This data plays a major role in bigdata landscape. In recent years, correlation, and implementation of bigdata and IoT is being extrapolated. Nowadays, predictive analytics is gaining attention of many researchers for big IoT data analytics. This paper summarizes different sort of IoT analytical platforms which consist in-built features for further use in machine learning, MATLAB, and data security. It emphasizes on different machine learning algorithms that plays important role in big IoT data analytics. Besides different analytical frameworks, this paper highlights the proposed model for bigdata in IoT domain and elaborates different forms of data analytical methods. Proposed model comprises different phases i.e., data storing, data cleaning, data analytics, and data visualization. These phases cover the basic characteristics of bigdata V’s model and most important phase is data analytics or big IoT analytics. This model is implemented using an IoT dataset and results are presented in graphical and tabular form using different machine learning techniques. This study enhances researchers’ knowledge about various IoT analytical platforms and usability of these platforms in their respective problem domains.
Hybrid swarm intelligence-based software testing techniques for improving quality of component based software Palak Palak; Preeti Gulia; Nasib Singh Gill
Indonesian Journal of Electrical Engineering and Computer Science Vol 22, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v22.i3.pp1716-1722

Abstract

Being a time-consuming and costly activity, software testing always demands optimization and automation. Software testing is an important activity to achieve quality and customer satisfaction. This paper presents a comparative evaluation of different hybrid automated software testing techniques using the concepts of soft computing for overall quality enhancement. A comparison between three hybrid automation techniques is carried out i.e., hybrid ant colony optimization-genetic algorithms (ACO-GA), hybrid artificial bee colony (ABC)-Naïve Bayes, hybrid ABC-GA along with three parent approaches. The comparison is made by applying these hybrid techniques for the selection of minimized test suites thus reducing overall testing effort and eliminating useless or redundant test cases. The experimental results prove the efficiency of these hybrid approaches in different scenarios. The impact of automated testing techniques for quality enhancement is assessed in terms of defect density and defect detection percentage.
Flow incorporated neural network based lightweight video compression architecture Sangeeta Sangeeta; Preeti Gulia; Nasib Singh Gill
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 2: May 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i2.pp939-946

Abstract

The sudden surge in the video transmission over internet motivated the exploration of more promising and potent video compression architectures. Though the frame prediction based hand designed techniques are performing well and widely used but the recent deep learning based researches in this domain provided further directions of pure deep learning based next generation codecs. As the bandwidth over the internet is varying, adaptive bit rate representation is more suitable for video quality adjustment in tune with bandwidth variation. The proposed architecture comprises of end to end trainable video compression network consisting of majorly three modules namely-motion extension network, flow autoencoder and frame autoencoder. Frame autoencoder generates the individual compressed frames, flow autoencoder is used for optical flow based motion compensation chore and next frame is predicted by the motion extension network. The network is designed and evaluated in incremental manner. The analysis of the outcomes demonstrates the promising performance of the network quantitatively and qualitatively. Moreover, the results reveal that inclusion of optical flow based motion compensation network to the MotionNet architecture has enhanced the performance.
Exploring machine learning techniques for fake profile detection in online social networks Bharti Bharti; Nasib Singh Gill; Preeti Gulia
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 3: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i3.pp2962-2971

Abstract

The online social network is the largest network, more than 4 billion users use social media and with its rapid growth, the risk of maintaining the integrity of data has tremendously increased. There are several kinds of security challenges in online social networks (OSNs). Many abominable behaviors try to hack social sites and misuse the data available on these sites. Therefore, protection against such behaviors has become an essential requirement. Though there are many types of security threats in online social networks but, one of the significant threats is the fake profile. Fake profiles are created intentionally with certain motives, and such profiles may be targeted to steal or acquire sensitive information and/or spread rumors on online social networks with specific motives. Fake profiles are primarily used to steal or extract information by means of friendly interaction online and/or misusing online data available on social sites. Thus, fake profile detection in social media networks is attracting the attention of researchers. This paper aims to discuss various machine learning (ML) methods used by researchers for fake profile detection to explore the further possibility of improvising the machine learning models for speedy results.
Performance analysis of perturbation-based privacy preserving techniques: an experimental perspective Ritu Ratra; Preeti Gulia; Nasib Singh Gill
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i5.pp5273-5281

Abstract

Nowadays, enormous amounts of data are produced every second. These data also contain private information from sources including media platforms, the banking sector, finance, healthcare, and criminal histories. Data mining is a method for looking through and analyzing massive volumes of data to find usable information. Preserving personal data during data mining has become difficult, thus privacy-preserving data mining (PPDM) is used to do so. Data perturbation is one of the several tactics used by the PPDM data privacy protection mechanism. In perturbation, datasets are perturbed in order to preserve personal information. Both data accuracy and data privacy are addressed by it. This paper will explore and compare several hybrid perturbation strategies that may be used to protect data privacy. For this, two perturbation-based techniques named improved random projection perturbation (IRPP) and enhanced principal component analysis-based technique (EPCAT) were used. These methods are employed to assess the precision, run time, and accuracy of the experimental results. This paper provides the impacts of perturbation-based privacy preserving techniques. It is observed that hybrid approaches are more efficient than the traditional approach.