Claim Missing Document
Check
Articles

Found 2 Documents
Search

Experimental investigation of the performance of a solar dryer integrated with solid desiccant coloums using water based solar collector for medicinal herb M. Yahya; R. Hasibuan; R. Sundari; K. Sopian
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i2.pp1024-1033

Abstract

This study is concerned with the analyses of performance on a solar dryer integrated with solid desiccant coloums using water based solar collector. The dryer consists of a solar water collector, two solid desiccant coloums, a water storage tank, two heat exchangers, an air heater, and a drying chamber. The dryer decreased the Centella asiatica L moisture content from 88.3% (wb) to 15.9% (wb) within 12 hours, with an average temperature and relative humidity of 45.4°C and 25.8%, respectively. The rate of moisture evaporation and the specific moisture evaporation rate were in the range of 0.001-1.762kg/h and 0.02-0.482 kg/kWh, with 0.594kg/h and 0.169kg/kWh in average values, respectively. The dryer efficiency was in the range of 0.62%-30.4%, with 15.4% in average value. The energy required for moisture evaporation and total energy input to the dryer were in the range of 26.9-1132.2W and 3638.0-4329.7W, with 601.8 W and 3967.4 W in average values, respectively. The efficiency of collector and the heat exchanger effectiveness were in the range of 38.1-50.5% and 65.1-79.7%, with 45.0% and 73.0% in average values, respectively. The result shows that the dryer is suitable for drying Centella asiatica L, this is due to the low temperature of drying air and high moisture evaporation rate.
Comparative performance of a solar assisted heat pump dryer with a heat pump dryer for Curcuma R. Hasibuan; M Yahya; H. Fahmi; Edison Edison
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 3: September 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (651.225 KB) | DOI: 10.11591/ijpeds.v11.i3.pp1617-1627

Abstract

This study evaluated the performances of solar assisted heat pump dryer (SAHPD) and heat pump dryer (HPD) for drying of Curcuma xanthorrhiza Roxb. The HPD and SAHPD reduced mass of Curcuma from 30.70 kg to 7.85 kg needed 10.5 hours and 8 hours with average temperature and relative humidity 49.2oC and 26.5%, and 57.7oC and 19.8%, for SD and SAHPD respectively. The moisture of Curcuma dried from 3.167 db to 0.065 db with an air mass flow rate of 0.121 kg/s. The SAHPD reduced the drying time about 24% compared to HPD. The drying rate and the specific energy consumption were calculated in an average 1.05 kg/h and 1.36kg/h, and 1.17kWh/kg and 2.07kWh/kg for HPD and SAHPD, respectively. The specific moisture extraction rate and the dryer thermal efficiency were calculated in an average 0.931 kg/kWh and 0.521 kg/kWh, and 61.0% and 34.3% for HPD and SAHPD, respectively. Whereas, the pickup efficiency and the coefficient of performance of the heat pump were calculated in an average 57.5% and 59.2%, and 4.03and 4.35 for HPD and SAHPD, respectively. The SAHPD is capable of drying Curcuma quickly because of the high pickup efficiency and high drying rate.