Feroza Begum
Universiti Brunei Darussalam

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Prospect of renewable energy resources in Bangladesh Mohammad Mafizur Rahman; Feroza Begum
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1804-1812

Abstract

The objective of this paper is to provide an overview of the current state of renewable energy resources in Bangladesh, as well as to examine various forms of renewable energies in order to gain a comprehensive understanding of how to address Bangladesh's power crisis issues in a sustainable manner. Electricity is currently the most useful kind of energy in Bangladesh. It has a substantial influence on a country's socioeconomic standing and living standards. Maintaining a stable source of energy at a cost that is affordable to everyone has been a constant battle for decades. Bangladesh is blessed with a wealth of natural resources. Bangladesh has a huge opportunity to accelerate its economic development while increasing energy access, livelihoods, and health for millions of people in a sustainable way due to the renewable energy system.
Design and simulation of rotated hexagonal porous core photonic crystal fibre with improved effective material loss and dispersion properties Izaddeen Kabir Yakasai; Pg. Emeroylariffion Abas; Norazanita Hj Shamsuddin; Feroza Begum
Indonesian Journal of Electrical Engineering and Computer Science Vol 20, No 1: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v20.i1.pp75-81

Abstract

A thorough modal characterization, centred on the full vectorial finite element method (FEM) has been used to model and numerically investigate a porous core photonic crystal fibre (PC-PCF), which may potentially be integrated into Terahertz (1012 Hz) compact systems. The proposed fibre consists of a rotated hexagonal core surrounded by a conventional hexagonal cladding. It has been shown that effective material loss (EML), core power fraction and dispersion profile are 0.019 cm-1, 51.7% and 0.5 ± 0.04 ps/THz/cm within 1 THz bandwidth, respectively. Based on simulated results and noncomplex design, it is envisaged that the proposed fibre can be realised for industrial THz applications.