Claim Missing Document
Check
Articles

Found 13 Documents
Search

Harmonic Load Mitigation Using the Optimal Double Tuned Passive Filter Technique Muhammad Murtadha Othman; W Muhammad Faizol bin W Mustapha; Amirul Asyraf Mohd Kamaruzaman; Aainaa Mohd Arriffin; Ismail Musirin; Nur Ashida Salim; Zulkiffli Abdul Hamid; Nofri Yenita Dahlan
Indonesian Journal of Electrical Engineering and Computer Science Vol 6, No 2: May 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v6.i2.pp338-348

Abstract

Harmonic is one of the power quality disturbances customarily imminent in an unbalanced electrical system. Harmonic represents as the multiple integral of fundamental frequency of voltage and current inflicting towards the shifting in system frequency causing to a disruptive operation of electrical devices. This paper investigates on the performance of passive filter intrinsically by utilizing the inductor and capacitor electrical components to mitigate harmonic problem emanating from an unbalanced electrical system. In particular, explication in this paper will focus on the optimal parameters specification for the double tuned passive filter that used to overcome the phenomenon of harmonic issue. The two case studies constituting with different number of harmonic orders injected in a system were introduced to distinguish effectiveness of double tuned passive filter in solving the aforesaid problems. The parameters configuration of the passive filter are automatically tuned by the MATLAB® software to reduce the total harmonic distortion incurred in a system designed under the Simulink® software.
Design of a Small Renewable Resource Model based on the Stirling Engine with Alpha and Beta Configurations Faisal Zahari; Muhammad Murtadha Othman; Ismail Musirin; Amirul Asyraf Mohd Kamaruzaman; Nur Ashida Salim; Bibi Norasiqin Sheikh Rahimullah
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 2: November 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i2.pp360-367

Abstract

This paper presents the conceptual design of Stirling engine based Alpha and Beta configurations. The performances of Stirling engine based Beta configuration will be expounded elaborately in the discussion. The Stirling engines are durable in its operation that requires less maintenance cost.  The methodology for both configurations consists of thermodynamic formulation of Stirling Cycle, Schmidt theory and few composition of flywheel and Ross-Yoke dimension. Customarily, the Stirling engine based Beta configuration will operate during the occurrence of low and high temperature differences emanating from any type of waste heat energy. A straightforward analysis on the performance of Stirling engine based Beta configuration has been performed corresponding to the temperature variation of cooling agent. The results have shown that the temperature variation of cooling agent has a direct effect on the performances of Stirling engine in terms of its speed, voltage and output power. 
Chaotic immune symbiotic organisms search for SVC installation in voltage security control Mohamad Khairuzzaman Mohamad Zamani; Ismail Musirin; Saiful Izwan Suliman; Muhammad Murtadha Othman
Indonesian Journal of Electrical Engineering and Computer Science Vol 16, No 2: November 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v16.i2.pp623-630

Abstract

Parallel with the urbanization of the world, energy demand in the world also increased. The increase in energy demand will require a power system to be operated near its stability limit. To mitigate the problem, Flexible Alternating Current Transmission System (FACTS) devices can be installed as a compensation scheme to improve voltage security in a power system. For an effective compensation, FACTS devices should be optimally allocated in a power system. Although optimization techniques can be implemented to optimally allocate these devices, problems have been reported which would affect the performance of the optimization techniques in terms of producing high quality solutions. This paper presents the implementation of Chaotic Immune Symbiotic Organisms Search for solving optimal Static VAr Compensator (SVC) allocation problem for voltage security control. The optimization is validated in IEEE 26-Bus Reliability Test System (RTS) realizes the capability of CISOS in solving the optimization problem. Comparative studies with respect to Particle Swarm Optimization (PSO) and Evolutionary Programming (EP) resulting in good agreement on the results and demonstrated superior performance of CISOS. Results of the study can be beneficial to power system community in terms of compensation planning prior to real world implementation.