Yusnida Ahmad Tarmizi
Universiti Teknikal Malaysia Melaka

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Review and Comparison of Sensorless Techniques to Estimate the Position and Speed of PMSM Yusnida Ahmad Tarmizi; Kasrul Abdul Karim; S. Azura Ahmad Tarusan; Auzani Jidin
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 3: September 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (476.795 KB) | DOI: 10.11591/ijpeds.v8.i3.pp1062-1069

Abstract

Sensorless technique becomes popular nowadays in electrical drive applications specificially for AC motor drive. It is applied to determine and estimate the rotor position especially for PMSM motor. This paper presents the comparison sensorless technique to determine and estimate the position and rotor of PMSM motor. PMSM motor is widely used in industrial and automation due to its high performance motor drive. However, the location of PMSM motor in humidity and harsh environment causing the accuracy of motor is inaccurate due to deterioration of position sensor . Therefore, many sensorless techniques have been proposed by previous researchers in order to solve the problem. This paper presents the review of several categories; Model Based Method, Saliency Based Method and Signal Injection, and Artificial Intelligence Based Estimator. In addition, sensorless techniques on each category have been compared and described in terms of their advantages and disadvantages.
A simple constant switching frequency of direct torque control of brushless DC motor Yusnida Ahmad Tarmizi; Auzani Jidin; Kasrul Abdul Karim; T. Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1121.982 KB) | DOI: 10.11591/ijpeds.v10.i1.pp10-18

Abstract

This paper discusses about direct torque control of Brushless DC motor by injecting the triangular waveform and using PI controller in order to reduce the torque and obtain constant switching frequency. Brushless DC motor are widely used in applications which require wide range of speed and torque control because of robust, longer lifespan, faster torque response and able to operate at high speed.  Unlike conventional three phase DTC of induction machine (IM),the proposed DTC approach introduces two phase conduction mode. Besides that, the magnitude flux is considered constant in which the results only gains from constant torque region. Thus, the flux control loop is eliminated while implement this scheme. Using the triangular waveform that will be compare with actual torque, the proper switching pattern can be selected to control the generated torque and reducing commutation torque ripple. The torque response depends on the speed of the stator flux linkage which is directly controlled by selecting appropriate voltage space vectors from a look-up table to make sure the torque error within the band. The validity of the proposed control scheme for constant switching frequency and reduce torque ripple are verified through simulation and experimental results.