Ibrahim Alhamrouni
University Kuala Lumpur (UniKL BMI)

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

Design and development of SEPIC DC-DC boost converter for photovoltaic application Ibrahim Alhamrouni; M. K. Rahmat; F. A. Ismail; Mohamed Salem; Awang Jusoh; T. Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (333.957 KB) | DOI: 10.11591/ijpeds.v10.i1.pp406-413

Abstract

This study highlights a new construction of SEPIC DC-DC converter. The proposed converter aims for some features such as high voltage gain, continuous input current and reduce stress on the power switch. In addition, the circuit construction ensurs the simplicity in design along with signicant cost saving, since its components are readily available and smaller in size compared to the off-shelf components. This type of converter can adjust the DC voltage to maintain its output voltage to be constant. Typically, SEPIC operated in equipment that uses battery and also in wide range input voltage DC power supply. The converter is designed for renewable energy application where it is able to regulate the output voltage of the Photovoltaic (PV). The converter has been analysed based on different switching frequencies and duty cycle. Thus the outcome of the proposed converter can be achieved by using D=0.45 and fs=30 kHz. The proposed converter is supplied by 26V as an input voltage and produces 300V output and gives 94% of efficiency.
Modelling and design of PID controller for voltage control of AC hybrid micro-grid Ibrahim Alhamrouni; M. A. Hairullah; N. S. Omar; Mohamed Salem; Awang Jusoh; T. Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (538.29 KB) | DOI: 10.11591/ijpeds.v10.i1.pp151-159

Abstract

The growing demand for power that needs to be remotely transported creates a fast and effective solution of Distributed Energy Resources (DERs) integration. Distributed Energy Resources (DERs) can lessen the electrical and physical distance between load loss and generator, transmission and distribution, and the level of carbon emissions. Such challenges can be overcome by using microgrids, which combine various types of DERs without interrupting the grid operation, allowing the power system to detect and control the errors more efficiently, allowing the shedding load and automatic switching through control algorithms so that blackouts and power restoration times are shortened, enabling either a relevant grid or islanded mode operation, and improving system reliability and flexibility via DERs. This work includes modelling of hybrid AC micro-grid as well as presenting an efficient control technique for micro-grid. In the present work the performance of hybrid AC microgrid system is analyzed in the islanded mode. Photovoltaic system and fuel cell stack are used for the development of microgrid. It also includes microgrid control objectives and the most common problems encountered and their solutions. The employed control technique is able to control the output voltage at a desired and standard value. The control strategies of the hybrid AC microgrid are simulated in MATLAB/SIMULINK.
Application of static synchronous compensator and energy storage system for power system stability enhancement Mohammed Salheen Alatshan; Ibrahim Alhamrouni; Tole Sutikno; Awang Jusoh
Bulletin of Electrical Engineering and Informatics Vol 9, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v9i6.2319

Abstract

The major drivers of the quest for optimal placement of flexible alternating current transmission system (FACTS) devices are the quest for smart grids and economic indicators. The demand for energy and power stability will continue much as the astronomic growth in industries and increase in global population remains. The aim of this paper is to deliver a panoramic view of the use of static synchronous compensator (STATCOM) in combination with energy storage system (ESS) in order to enhance power stability. In this paper, it was observed that application of ESS is an important factor in attaining power stability and mitigating the effect of dynamics associated with the power supply system. The miniaturization of batteries and adequate placement of STATCOMs will be a challenge much as new power system are built or existing ones are expanded. The future of ESS is towards the adoption of renewable energy sources as against batteries. 
Multi-input interleaved DC-DC converter for hybrid renewable energy applications Ibrahim Alhamrouni; Mohamed Salem; Younes Zahraoui; Basilah Ismail; Awang Jusoh; Tole Sutikno
Bulletin of Electrical Engineering and Informatics Vol 11, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i3.3779

Abstract

The increasing demand for hybrid energy systems based on renewable energy sources has enabled the new dimension for multi-input converter (MIC). Various topologies have been introduced over the last decade. However, most of these topologies have several drawbacks in terms of design complexity or efficiency. Therefore, this research aims to introduce a multi-input DC-DC converter for hybrid renewable energy applications. The proposed multi-input converter is able to hybridize different sources such as solar PV array and PEMFC. Analysis and simulation have been carried out for the double input two-phase interleaved converter in operating the boost mode. The proposed converter is designed in matlab simulink by using interleaved boost converter method to achieve a boosted and smoothened output. The proposed topology has shown a remarkable performance in terms of output voltage boosting, voltage ripple reduction as well as enhanced efficiency through interleaved boosting technique. From the simulation results, it can be observed that the proposed converter can gain high efficiency which is higher than 97%. The obtained results have been validated with previously published works and the proposed technique has been proven to yield compatible and improved outcomes.
Design of single phase inverter for photovoltaic application controlled with sinusoidal pulse width modulation Ibrahim Alhamrouni; N. Zainuddin; Mohamed Salem; Nadia H. A. Rahman; Lili Awalin
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 2: August 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i2.pp620-630

Abstract

The application of fossil fuels likes coal, oil and gas gives the enormous environmental impact and hazardous effects to the earth. Hence, renewable energy has become the most tremendously friendly methods to generate the electricity without pollution and emissions. Inverter is a power electronics device which is used to convert Direct Current (DC) into Alternating Current (AC). The conventional inverter no longer fulfills the requirement of reducing harmonic distortions plus it causes global warming and greenhouse effect. For increasing the efficiency and reliability of the system, the PV inverter becomes a vital part in the conversion of DC to AC output. This research thus presents a single phase photovoltaic inverter controlled with sinusoidal pulse-width-modulation (SPWM) and low pass filter connection between the inverter and the utility grid to reduce the harmonics due to intermittent nature of the renewable energy sources. Unipolar and Bipolar switching scheme are applied to control the magnitude and frequency of output voltage and result of both unipolar and bipolar are compared. The simulation of the proposed technique is executed by using Matlab/Simulink.
Modeling of micro-grid with the consideration of total harmonic distortion analysis Ibrahim Alhamrouni; Wira Wahab; M. Salem; Nadia H. A. Rahman; Lili Awalin
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 2: August 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i2.pp581-592

Abstract

With the rapid expansion of electricity grid, there yet still places to be covered considering their remote location. Micro-grid (MG) is a solution in this scenario, in fact, there is actually many cases where MG is used in case of emergency and act as a backup to the main electrical grid. By disconnecting itself from the larger grid, a grid that can have many problems, the micro-grid becomes much more flexible in its operations and by continuing to power households and communities alike. Besides grid-connected mode, it is necessary for the MG to operate in autonomous mode. By operating in islanded mode, micro-grids must be able to supply critical load without interruption, run at specific values for voltage and power and extract the maximum power from the distributed generations (DG). Therefore, the modeling of microgrid network considering solar photovoltaic(PV) and wind turbine generation (WTG) system as the distributed generation have been modeled using Matlab/Simulink in this research. Apart from that, the observation of total harmonic distortion(THD) between two operation modes of grid-connected and the islanded-mode is presented in order to analyze the power quality stability towards two operations MG network with same loads size and network parameters.