A. Ambikapathy
Galgotias College of Engineering & Technology

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Vision based solar tracking system for efficient energy harvesting Kanhaiya Kumar; Lokesh Varshney; A. Ambikapathy; Inayat Ali; Ashish Rajput; Anant bhatnagar; Sajal omar
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1431-1438

Abstract

Electricity is a major source of energy for fast growing population and the use of nonrenewable source is harmful for our environment. This reason belongs to devastating of environment, so it is required to take immediate action to solve these problems which result the solar energy development. Production of a solar energy can be maximizing if we use solar follower. The major part of solar panels is microcontroller with arrangement of LDR sensor is used to follow the sun, where the sensors is less efficient to track the sun because of the low sensitivity of LDR. We are proposing a method to track sun more effetely with the help of both LDR sensors and image processing. This type of mechanism can track sun with the help of image processing software which combines both result of sensors and processed sun image to control the solar panel. The combination of both software and hardware can control thousands of solar panels in solar power plants.
Soft computing and IoT based solar tracker Kanhaiya Kumar; Lokesh Varshney; A. Ambikapathy; Vrinda Mittal; Sachin Prakash; Prashant Chandra; Namya Khan
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1880-1889

Abstract

The significance of the solar energy is to intensify the effectiveness of the Solar Panel with the use of a primordial solar tracking system. Here we propounded a solar positioning system with the use of the global positioning system (GPS) , artificial neural network (ANN) and image processing (IP) . The azimuth angle of the sun is evaluated using GPS which provide latitude, date, longitude and time. The image processing used to find sun image through which centroid of sun is calculated and finally by comparing the centroid of sun with GPS quadrate to achieve optimum tracking point. Weather conditions and situation observed through AI decision making with the help of IP algorithms. The presented advance adaptation is analyzed and established via experimental effects which might be made available on the memory of the cloud carrier for systematization. The proposed system improve power gain by 59.21% and 10.32% compare to stable system (SS) and two-axis solar following system (TASF) respectively. The reduced tracking error of IoT based Two-axis solar following system (IoT-TASF) reduces their azimuth angle error by 0.20 degree.