Ifeanyi Chinaeke-Ogbuka
University of Nigeria

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A robust high-speed sliding mode control of permanent magnet synchronous motor based on simplified hysteresis current comparison Ifeanyi Chinaeke-Ogbuka; Augustine Ajibo; Kenneth Odo; Uche Ogbuefi; Muncho Mbunwe; Cosmas Ogbuka; Emenike Ejiogu
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i1.pp1-9

Abstract

A robust high-speed sliding mode control (SMC) of three phase permanent magnet synchronous motor (PMSM) is presented. The SMC served for inner speed control while a simplified hysteresis current control (HCC) scheme was used in the outer current control to generate gating signals for the inverter switches. The present research leverages on the ability of SMC to directly access system speed error which it attempts driving to zero by cancelling modelling uncertainties and disturbances. Performance comparison was done for the SMC model and an existing model having classical PI controller. With the initial positive speed command of 200 rpm at 5 Nm constant loading, rotor speed with SMC neatly settled to the reference speed at 0.085 seconds without overshoot while the rotor speed of the model with PI controller settled at 0.217 seconds after overshoot. This translates to 155.3% speed enhancement. Similar superior speed performance of the SMC was also observed during recovering from sudden speed reversal. While the SMC model recovered and settled to the reference speed of -200 rpm at 0.369 seconds, the model with PI controller settled at 0.482 seconds. From the results, it can be seen that SMC demonstared superiority over the conventioanl PI controller for complex drives systems.
A novel direct torque and flux control of permanent magnet synchronous motor with analytically-tuned PI controllers Kenneth Odo; Chibuike Ohanu; Ifeanyi Chinaeke-Ogbuka; Augustine Ajibo; Cosmas Ogbuka; Emenike Ejiogu
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i4.pp2103-2112

Abstract

This work presents a novel direct torque and flux control (DTFC) of permanent magnet synchronous motor (PMSM) with analytically-tuned proportional integral (PI) controllers. The proportional (K_p) and integral (K_i) gains of the PI controllers were accurately determined, from first principle, using the model of the control system. The PI flux and torque controllers were then developed in rotor reference frame. The designed PI controllers, together with the torque and flux controllers, were tested on a permanent magnet synchronous motor (PMSM). The results obtained were compared with results from conventional DTFC system using manually-tuned PI controllers. The total harmonic distortion (THD) of motor phase currents is 18.80% and 4.81% for the conventional and proposed models respectively. This confirms a significant reduction in torque ripples. The control system was tested for step torque loading and found to offer excellent performance both during load changes, speed reversal, and constant load conditions.