Jin Huang
Huazhong University of Science and Technology

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Effects of Switching Frequency Modulation on Input Power Quality of Boost Power Factor Correction Converter Deniss Stepins; Jin Huang
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v8.i2.pp882-899

Abstract

Switching frequency modulation (SFM) as spread-spectrum technique has been used for electromagnetic interference reduction in switching power converters. In this paper, a switching-frequency-modulated boost power factor correction (PFC) converter operating in continuous conduction mode is analysed in detail in terms of its input power quality. Initially, the effect of SFM on the input current total harmonic distortion, power factor and low-frequency harmonics of the PFC converter are studied by using computer simulations. Some advices on choosing parameters of SFM are given. Then the theoretical results are verified experimentally. It is shown that, from a power quality point of view, SFM can be harmful (it can significantly worsen the power quality of the PFC converter) or almost harmless. The results depend on how properly the modulation parameters are selected.
Hybrid-modulation-based control technique for reduction of output voltage ripples in frequency-modulated switch-mode power converters Deniss Stepins; Jin Huang; Janis Audze
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2084.507 KB) | DOI: 10.11591/ijpeds.v9.i3.pp1272-1284

Abstract

In this paper a novel control technique for switching-frequency-modulated switch-mode power converters (SMPC) operating in discontinuous conduction mode is proposed. The use of the technique leads to significant reduction in peak-to-peak output voltage and peak currents increased due to straightforward application of switching frequency modulation (SFM). The technique is based on hybrid modulation scheme in which both switching frequency and duty ratio are modulated simultaneously by the same modulation signal. Theoretical analysis and experimental verification of the proposed technique are presented in details. Both computer simulations and experiments show that switching-frequency-modulated SMPC with the proposed control technique in comparison to SMPC without SFM has appreaciably lower conducted electromagnetic emissions, at the cost of slightly increased peak-to-peak output voltage and peak currents.