Claim Missing Document
Check
Articles

Found 2 Documents
Search

Fuzzy Logic Controlled Harmonic Suppressor in Cascaded Multilevel Inverter Y. Lalitha Kameswari; O. Chandra Sekhar
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 2: June 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v7.i2.pp303-310

Abstract

This paper presents an investigation of seven level cascaded H-bridge (CHB) inverter in power system for compensation of harmonics.For power quality  control a Fuzzy Logic Control (FLC)  giving comparatively better harmonic reduction than the conventional controllers. Harmonic distortion is the most important power quality problem stirring in multilevel inverter, the harmonics can be eliminated by an optimal selection of switching angles. A hybrid evaluation technique evaluates the obtained optimal switching angles that are attained from the fuzzy inference system as well as neural network. The proposed method will be implemented in MATLAB working platform and the harmonic elimination performance will be evaluated.
A Simplified PWM Technique for Reduced Switch Count Multilevel Inverter Adireddy Ramesh,; O. Chandra Sekhar; M. Siva Kumar
Indonesian Journal of Electrical Engineering and Computer Science Vol 9, No 3: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v9.i3.pp711-721

Abstract

Penetration of multilevel inverters (MLI) in to high power and medium voltage application has been increasing because of its advantages. The conventional two levels inverter has high harmonic distortion which gives poor power quality. Lot of topologies has been developed to overcome the drawbacks of a two level inverter. These topologies include more number of switching devices which increases the design complexity and cost. The optimum design of inverter requires less number of switches with better quality in waveform. In this paper, a symmetrical five level and seven levels inverter configuration with simplified pulse width modulation technique is proposed. This proposed inverter requires less switches, less protection circuits along with low cost and size. The analysis of the inverter circuits is done by using Matlab/Simulink software. The synthesized staircase wave form is shown and total harmonic distortion (THD) is also measured.