Alexander G. Garganeev
National Research Tomsk Polytechnic University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Review of three-phase inverters control for unbalanced load compensation Raef Aboelsaud; A. Ibrahim; Alexander G. Garganeev
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (760.132 KB) | DOI: 10.11591/ijpeds.v10.i1.pp242-255

Abstract

In the microgrid systems, three-phase inverter becomes the main power electronic interface for renewable distributed energy resources (DERs), especially for the islanded microgrids in which the power quality is easily affected by unbalanced and nonlinear loads, this is due to the fact that the voltage and frequency of the microgrid are not supported by the main power grid but determined only by the inverters. Therefore, the compensation of the load unbalances and harmonics in autonomous microgrid inverters are getting more attention in power quality research areas. The main purpose of this paper is to represent an overview of the control strategies of various inverters for unbalanced load compensation
Improved dead-time elimination method for three-phase power inverters Raef Aboelsaud; Ahmed Ibrahim; Alexander G. Garganeev; Ivan V. Aleksandrov
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 4: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v11.i4.pp1759-1766

Abstract

In real inverters' operations, it is essential to insert delay time in the pulses provided to the inverter switches to protect the DC link against the short circuits. From this situation, the dead time phenomenon is introduced that causes undesirable performance and distortion of the output signal. Previously, researchers have proposed various schemes for compensating or eliminating dead-time. In this paper, a new dead-time elimination (DTE) scheme is proposed with a guarantee algorithm to eliminate dead-time and overcome the issues produced at the zero-currents-crossing point (ZCC). This method does not require additional hardware or filters to determine the polarity of the output current, and its principle is very simple to implement. The developed DTE method completely removes the dead-time issues on the magnitude and phase of the output voltage, and avoid the problems which can be induced around the ZCC. The results confirm the effectiveness and safety of this method.