Deng Ying
North China Electric Power University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Design and simulation of Lidar based control system for wind turbine Atif Iqbal; Deng Ying; Faheem Akhter; Manoj Kumar Panjwani; Danish Khan
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i1.pp542-550

Abstract

Renewable energy sources could be the main contributor to fulfilling the world’s energy requirement. Wind energy is grabbing the world’s attention due to its abundant nature and reliability. Wind energy is a prominent renewable energy source due to its availability and higher reliability. Despite the aforementioned benefits, there are some challenges such as wind measurement and prediction due to the turbulent nature of the wind. Lidar (light detection and ranging) technology is used in wind turbines to preview the wind and act it accordingly. Wind speed along with the direction is measured by the Lidar before it reaches the wind turbine plane and the control system of the wind turbine utilizes this data for optimal results. It enhances the control system along with it optimizes the output power. This paper presents the Lidar simulation model, which previews the wind earlier than the conventional feedback method. The Lidar simulation model is prepared and implemented on the horizontal axis wind turbine. The simulation is performed in GH Bladed at a 2.0 MW wind turbine. The output results are analyzed with the former method. The power extracted, pitch angle, rotor torque obtained from the proposed methodology proves its efficacy.