Abba Lawan Bukar
Universiti Teknologi Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimal planning of hybrid photovoltaic/battery/diesel generator in ship power system Abba Lawan Bukar; Chee Wei Tan; Kwan Yiew Lau; Ahmed Tijjani Dahiru
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 3: September 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (616.562 KB) | DOI: 10.11591/ijpeds.v11.i3.pp1527-1535

Abstract

In line with the increasing concern on the pollution release by marine ships, renewable energy technologies in ships power system has received so much attention. Recently, photovoltaic (PV) and energy storage system (ESS) are been integrated into conventional diesel generator in ships power system Nevertheless, improper sizing of the overall ship power station will result in a high investment cost and increase CO2 emission. This paper devised a methodology to compute the optimal size of the ESS, PV and diesel generator in a ship power system to minimize CO2 emission, fuel cost, and investment cost. It is a well-known fact that power generation in a sailing ship depend on the time zone, local time, date, latitude, and longitude along ship navigation route and the condition of the ship power system also differs from power systems on land. The devised method in this paper takes into accounts the geographical and season variation of solar insolation along the route from Lagos (Nigeria) to Conakry (Guinea) and accurately model the power output of PV modules is along the route.
A community scale hybrid renewable energy system for sustainable power supply during load shedding Muhammad Paend Bakht; Mohd Norzali Haji Mohd; Shahrin Md. Ayob; Nuzhat Khan; Abba Lawan Bukar
Indonesian Journal of Electrical Engineering and Computer Science Vol 31, No 1: July 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v31.i1.pp33-43

Abstract

Load shedding is an operating condition in which the electrical grid is temporarily disconnected from the load. The objective is to minimize the gap between available generation capacity and load demand while maintaining an equitable supply for all consumers. Load shedding is a prominent problem for many developing countries. To address this issue, this paper explores the potential of a hybrid energy system (HES) to provide uninterrupted power supply at the distribution feeder despite load shedding from electrical grid. The proposed HES in this work combines photovoltaic (PV) array, battery storage system (BSS) and diesel generator (DG). The HES is equipped with energy management scheme (EMS) that ensures continuous power supply, improves energy efficiency, and minimizes the electricity cost. To accomplish these tasks, the EMS operates the system in one of three modes: grid mode, renewable energy source mode and the diesel generator mode. Besides, the proposed methodology allows injecting surplus PV energy into the grid, thus maximizing PV utilization and improving power system’s reliability. The results of this study will assist policymakers to determine the prospect of renewable based hybrid system to supply sustainable power and eliminate the energy problems in the power deficit countries.