Claim Missing Document
Check
Articles

Found 2 Documents
Search

Adaptive fuzzy sliding mode based MPPT controller for a photovoltaic water pumping system Sabah Miqoi; Abdelghani El Ougli; Belkassem Tidhaf
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (389.498 KB) | DOI: 10.11591/ijpeds.v10.i1.pp414-422

Abstract

The applications of photovoltaic energy are steadily increasing. However, the output power of a photovoltaic system is influenced by the meteorological conditions (temperature and irradiation), which can affect the production and efficiency of the photovoltaic panel energy. So to ensure that the photovoltaic panel produces its maximum power possible at any time and regardless of the external conditions, we use the equipment called MPPT (maximum power point tracker). Sliding mode control is recognized by its stability and robustness and widely used in non-linear systems but represents a disadvantage because of the chattering phenomena. So in order to overcome this problem and improve this control, we opted to add to it the adaptive fuzzy control which will adapt the switching gain. This controller is named AFSMC (adaptive fuzzy sliding mode control) and will be compared the sliding mode controller SMC in order to see the difference and to the P&O (perturb & observe) method to validate this controller. Our system consists of a photovoltaic panel a DC-DC boost converter and a centrifugal pump with a DC motor. All simulations are carried out under MATLAB/SIMULINK and the extracted results show the efficiency of the AFSMC controller and confirm that the new methods have improved energy efficiency and production
Sensor fault reconstruction for wind turbine benchmark model using a modified sliding mode observer Mohammed Taouil; Abdelghani El Ougli; Belkassem Tidhaf; Hafida Zrouri
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i5.pp5066-5075

Abstract

This paper proposes a fault diagnosis scheme applied to a wind turbine system. The technique used is based on a modified sliding mode observer (SMO), which permits the reconstruction of actuator and sensor faults. A wind turbine benchmark with a real sequence of wind speed is exploited to validate the proposed fault detection and diagnosis scheme. Rotor speed, generator speed, blade pitch angle, and generator torque have different orders of magnitude. As a result, the dedicated sensors are susceptible to faults of quite varying magnitudes, and estimating simultaneous sensor faults with accuracy using a classical SMO is difficult. To address this issue, some modifications are made to the classic SMO. In order to test the efficiency of the modified SMO, several sensor fault scenarios have been simulated, first in the case of separate faults and then in the case of simultaneous faults. The simulation results show that the sensor faults are isolated, detected, and reconstructed accurately in the case of separate faults. In the case of simultaneous faults, with the proposed modification of SMO, the faults are precisely isolated, detected, and reconstructed, even though they have quite different amplitudes; thus, the relative gap does not exceed 0.08% for the generator speed sensor fault.