Claim Missing Document
Check
Articles

Found 1 Documents
Search

Machine learning based multi class fault diagnosis tool for voltage source inverter driven induction motor Jyothi R; Tejas Holla; Uma Rao K; Jayapal R
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i2.pp1205-1215

Abstract

AC drives are employed in process industries for varying applications resulting in a wide range of ratings. The entire process industry has seen a paradigm shift from manual to automated systems. The major factor contributing to this is the advanced power electronics technology enabling power electronic drives for smooth control of electric motors. Induction motors are most commonly used in industries. Faults in the power electronic circuits may occur periodically. These faults often go unnoticed as they rarely cause a complete shutdown and the fault levels may not be large enough to lead to a breakdown of the drive. An early detection of these faults is required to prevent their escalation into major faults. The diagnostic tool for detection of faults requires real time monitoring of the entire drive. In this work, detailed investigation of different faults that can occur in the power electronic circuit of an industrial drive is carried out. Analysis and impact of faults on the performance of the induction motor is presented. A real time monitoring platform is proposed to detect and classify the fault accurately using machine learning. A diagnostic tool also is developed to display the severity and location of the fault to the operator to take corrective measures.