Claim Missing Document
Check
Articles

Found 2 Documents
Search

Smart integration of drive system for induction motor applications in electric vehicles Mohamed K. Metwaly; Mohamed Alsharef; Nehmdoh A. Sabiha; Ehab E. Elattar; Ibrahim B. M. Taha; Amr M. Abd-Elhady; Nagy I. Elkalashy
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i1.pp20-28

Abstract

In this paper, a smart drive system of the induction motor (IM) is proposed and adapted for applications in electric vehicles (EVs). Objectively, the EV drive systems are robust over wide speed and torque ranges. The proposed drive system is independent of encoder (encoderless) and concerned with the torque control drive (TCD) and indirect rotor field-oriented control (IRFOC) using the sliding mode observer (SMO). This arrangement of monitoring system and control techniques are smartly integrated for the IM applications in EVs. The encoderless technique utilizes SMO to estimate the stator current, rotor flux angle, and rotor speed. The SMO is verified in motoring mode at very low and zero speed conditions. The accelerator pedal is utilized for TCD to generate the reference torque required to accelerate the EV by the driver. The rotor flux angle is estimated based on IRFOC method. The laboratory waveforms illustrate the robustness of the encoderless control of the IM-based torque control drive system in electrical vehicle applications at very low speed using SMO. The laboratory waveforms prove the validity of SMO with encoderless control of a smart dive system of the IM in EV applications under load torque/speed variations.
Fractional order PID controller adaptation for PMSM drive using hybrid grey wolf optimization Yasser Ahmed; Ayman Hoballah; Essam Hendawi; Sattam Al Otaibi; Salah K. Elsayed; Nagy I. Elkalashy
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i2.pp745-756

Abstract

In this paper, the closed loop speed controller parameters are optimized for the permanent magnet synchronous motor (PMSM) drive on the basis of the indirect field-oriented control (IFOC) technique. In this derive system under study, the speed and current controllers are implemented using the fractional order proportional, integral, and derivative (FOPID) controlling technique. FOPID is considered as efficient techniques for ripple minimization. The hybrid grey wolf optimizer (HGWO) is applied to obtain the optimal controllers in case of implementing conventional PID as well as FOPID controllers in the derive system. The optimal controller parameters tend to enhance the drive response as ripple content in speed and current, either during steady state time or transient time. The drive system is modeled and tested under various operating condition of load torque and speed. Finally, the performance for PID and FOPID are evaluated and compared within MATLAB/Simulink environment. The results attain the efficacy of the operating performance with the FOPID controller. The result shows a fast response and reduction of ripples in the torque and the current.