Claim Missing Document
Check
Articles

Found 2 Documents
Search

Performance of a vector control for DFIG driven by wind turbine: real time simulation using DS1104 controller board Sara Mensou; Ahmed Essadki; Issam Minka; Tamou Nasser; Badr Bououlid Idrissi; Lahssan Ben Tarla
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v10.i2.pp1003-1013

Abstract

In this research paper we investigate the modelling and control of a doubly fed induction generator (DFIG) driven in rotation by wind turbine, the control objectives is to optimize capture wind, extract the maximum of the power generated to the grid using MPPT algorithm (Maximum Power Point Tracking) and have a specified reactive power generated whatever wind speed variable, the indirect field oriented control IFOC with the PI correctors was used to achieve such as decoupled control. To validate the dynamique performance of our controller the whole system was simulated using dSPACE DS1104 Controller board Real Time Interface (RTI) which runs in Simulink/MATLAB software and ControlDesk 4.2 graphical interfaces.
Fuzzy logic-based energy management strategy on dual-source hybridization for a pure electric vehicle Hatim Jbari; Rachid Askour; Badr Bououlid Idrissi
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 5: October 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i5.pp4903-4914

Abstract

This paper presents a fuzzy logic controller (FLC) based energy management strategy (EMS), combined with power filtering for a pure electric vehicle. The electrical power supply is provided by a hybrid energy storage system (HESS), including Li-Ion battery and supercapacitors (SCs), adopting a fully active parallel topology. The vehicle model was organized and constructed using the energetic macroscopic representation (EMR). The main objective of this work is to ensure an efficient power distribution in the proposed dual source, in order to reduce the battery degradation. To evaluate the impact of the developed design and the efficiency of the developed EMS, the proposed FLC strategy is compared to a classical EMS using SCs-filtering strategy and architecture based on battery storage model. To validate the proposed topology, simulation results are provided for the new European driving cycle (NEDC) using MATLAB/Simulink environment.