Dhari Y. Mahmood
University of Technology

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Design and implementation of an indoor solar emulator based low-cost autonomous data logger for PV system monitoring Oday A. Ahmed; Hussain K Sayed; Kanaan A Jalal; Dhari Y. Mahmood; Waleed H. Habeeb
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (962.046 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1645-1654

Abstract

With the growing interest in renewable energy resources, a various number of studies and development for photovoltaic (PV) systems have investigated to satisfy global needs in energy. The larger interest in PV resources has increased request for suitable apparatus with which to test PV systems. This paper deals with the design of an indoor PV source emulator using an actual PV panel to facilitate PV system testing under real environment conditions. A low-cost Arduino Mega256 microcontroller-based data acquisition system (DAQ) approach has been developed to collect the data in term of voltage, power and current based on different levels of light intensity and temperature as well as under partial shading conditions. Hence, the proposed system is not just a solar emulator but it’s a complete solar emulator-DAQ system that can emulate the sunlight and monitor the PV parameters and then collect and store the data for further research investigation. The proposed monitoring system provides real time update of the solar panel characteristics at any time in the year without relying on the weather changes. This data acquisition system will be of superior interest for undergraduate and graduate students as it is both open-source and flexible. The details design of the proposed PV solar emulator and data logger and its implementation are described.
Enhancing performance of grid-connected photovoltaic systems based on three-phase five-level cascaded inverter Marwan E. Ahmad; Ali. H. Numan; Dhari Y. Mahmood
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i4.pp2295-2304

Abstract

Multilevel inverters play an important role in power converters due to their good advantages. The cascaded H-bridge inverter is one of the most prominent and most suitable multilevel inverters in PV systems. Each H-bridge has a separate photovoltaic (PV) array as an independent direct current (DC) source. This paper introduces a three-phase cascaded H-bridge inverter with five levels connected to the grid to improve the performance and efficiency of the photovoltaic system. In the proposed system, each PV group has MPPT to extract the maximum power point from the PV group at certain irradiation and temperature and also to mitigate the mismatch that causes in the imbalance transmitted power from inverter to the main grid. The proposed control scheme with modulation compensation was used, and the system was simulated in MATLAB/Simulink with two different scenarios. The simulation results demonstrate the effectiveness of the proposed connection in minimizing the total harmonic distortion (THD) to acceptable limit, low overshoot, and fast-tracking to the desired value.