Hassan Abouobaida
Chouaib-Doukkali University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Practical Performance Evaluation of Maximum Power Point Tracking Algorithms in a Photovoltaic System Hassan Abouobaida; EL Beid Said
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 4: December 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1189.256 KB) | DOI: 10.11591/ijpeds.v8.i4.pp1744-1755

Abstract

This paper addresses a performance evaluation of maximum power point tracking techniques (MPPT) in a photovoltaic system. This research work finds its applications in photovoltaic systems producing electric power with a better energy efficiency, which will lead to an improved relationship between the cost and the amount of the produced power. The importance of this work resides on the one hand in the evaluation of the performances of the different MPPTs according to three criteria instead of one or two criteria in other works of the literature and on the other hand in the study of Four algorithms in one paper and their comparisons. This paper discusses the performance evaluation of the MPPT algorithms called P&O, Inc-Cond, Hill-Climbing and Fuzzy algorithms based simulation results and practical validation. The performances of these algorithms are evaluated according to the following criteria: The response time, the amplitude of the oscillations around the optimal point and the accuracy. The objectives in this article are summarized in the following points: (a) modeling the photovoltaic systems, (b) presenting and detailing each MPPT algorithm (c) presenting and discussing the simulation results in Matlab/Simulink and practical validation (d) evaluating the performance of each algorithm. This paper is completed by a summary on the areas of use for each algorithm and conclusions.
New Optimization Method of the MPPT Algorithm and Balancing Voltage Control of the Three-Level Boost Converter (TLBC) Hassan Abouobaida; Said El Bied
International Journal of Applied Power Engineering (IJAPE) Vol 6, No 2: August 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (605.578 KB) | DOI: 10.11591/ijape.v6.i2.pp113-122

Abstract

This paper is dedicated to studying the control of the Three Level Boost Converters (TLBC) and the optimization method of Maximum Power Point Tracking (MPPT) based a variable step. The main objective of the optimization is to find a compromise between the response time and the amplitude of the oscillations around the optimal point. The nonlinear behavior of the TLBC is manifested by the presence of the disturbances. For reasons of simplicity of the control, a linearization based on the dynamic compensation of the disturbance is proposed. On the one hand, a cascaded MPPT algorithm and a simple linear regulator allow adjusting the inductance current and a maximum power operation of the wind system. On the other hand, a second linear regulator ensures balancing of the output voltages. The paper proposes a new approach to the optimization of the Inc-Cond MPPT. The suggested contribution consists of using an exponential function of the power derivative to develop a variable step. The adoption of the variable step size according to the dynamics of the wind system implies a compromise between the response time and the amplitude of the ripples around the optimal point. The simulation results showed that a variable step size, especially in transient conditions and during a very rapid climate change recover the optimum power point within a reasonable time and suitable amplitude of the oscillations. The results achieved in this study show the ability of the proposed approach to extract the maximum power according to the available wind speed while guaranteeing a better efficiency. The developed study is summarized by the following points: (a) modeling the wind conversion systems, (b) detailing the control approach of the TLBC and presenting the variable step method (c) presenting the simulations results and evaluating the perf.