Claim Missing Document
Check
Articles

Found 4 Documents
Search

Optimal design of a single-phase APF based on PQ theory Dur Muhammad Soomro; Sager K. Alswed; Mohd Noor Abdullah; Nur Hanis Mohammad Radzi; Mazhar Hussain Baloch
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 3: September 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (621.348 KB) | DOI: 10.11591/ijpeds.v11.i3.pp1360-1367

Abstract

The instantaneous active and reactive power (PQ) theory is one of the most widely used control theory for shunt active power filter (SAPF), which can be implemented in single-phase and three-phase systems. However, the SAPF with PQ theory still had ability to improve to become more efficient. This paper presents the optimal design of a single-phase SAPF in terms of reducing the current harmonic distortion and power loss in voltage source inverter (VSI) controlled with the semiconductor switching devices IGBT, MOSFET and Hybrid (combination of IGBT and MOSFET). In order to reduce the switching frequency and power loss of VSI, instead of using single-band hysteresis current controller (HCC), double-band HCC (DHCC) and triple-band HCC (THCC) is used in the SAPF. The designed SAPF is tested with different non-linear loads to verify the results by using MATLAB Simulink.
Optimization of detection of single line to ground fault by controlling peterson coil through ANFIS Feryal Ibrahim Jabbar; Dur Muhammad Soomro; Adnan Hasan Tawafan; Mohd Noor bin Abdullah; Nur Hanis binti Mohammad Radzi; Mazhar Hussain Baloch
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 9, No 3: September 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1199.318 KB) | DOI: 10.11591/ijai.v9.i3.pp409-416

Abstract

The most common fault in the distribution network is the single line to ground fault (SLGF). With earthling in the distribution network, it causes electrical arc as well as a high voltage in the faulted phase compared to other two healthy phases. It increases the danger of separation and isolation in the power network. One of the classical technique to control the arc is through Peterson Coil (PC), which detects and turns off/reduces the electrical arc making the network safer, increasing its reliability and device's safety. To control the PC, some of the techniques used in this research area are PID, FL, NN etc. This paper presents Adaptive Neural-Fuzzy Inference System (ANFIS) technique to controlling the PC. It gives the best results by detecting the fault, reducing the electrical arc and minimizing the fault current to the rated current in a very short time. Moreover, this research focuses on suppressing fault current by looking at its higher and lower peaks. Also, it calculates the opposing inductance to compensate the capacitance caused. It will save thousands of tons of copper costs. This research was conducted using MATLAB. For the validity of the proposed technique results, PID control technique was used.
Design of parabolic solar dish tracking system using arduino Asif Ahmed Rahimoon; Mohd Noor Abdullah; Dur Muhammad Soomro; Murad Yahya Nassar; Z.A. Memon; P.H. Shaikh
Indonesian Journal of Electrical Engineering and Computer Science Vol 17, No 2: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v17.i2.pp914-921

Abstract

This paper demonstrates the designing parameters of a solar parabolic dish prototype for rustic areas with great solar irradiance rate availability, where have no access of electricity services or low-income people survives to buy a stove (electric or gas). The solar parabolic dish prototype intends a solution against these types of remedies and pursues solar light to work. The parabolic dish has a polished surface, where the solar radiations fall and collected at a single concentrated focal point. At this point the collected form of energy is used to derive different thermal applications like as; cooking & heating with single and dual axis schemes. This paper discusses the important stages of dual axis prototype; implementation, solar location strategy, the analysis in terms of theory, structural design & material. The dual axis prototype is implemented through the help of Arduino chipboard that is easily in maintenance, along with that this prototype is configured with anti-lock H-bridge (L298) module to overcome the control circuit complexity and AVR modules. Two rotational motors of 12V are installed on 4*4ft designed aluminum frame with a dual-axis tracking system. The jerks among trackers are also reduced with this prototype which maintains the experimental declination angle about .To finish, this paper results that parabolic solar dish tracker obtains 3.43% improved power efficiency in comparison of photovoltaic panel tracker.
Optimize single line to ground fault detection in distribution grid power system using artificial bee colony Feryal Ibrahim Jabbar; Dur Muhammad Soomro; Mohd Noor bin Abdullah; Nur Hanis Mohammad Radzi; Mazhar Hussain Baloch; Asif Ahmed Rahmoon; Hassan Falah Fakhruldeen
Indonesian Journal of Electrical Engineering and Computer Science Vol 31, No 3: September 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v31.i3.pp1286-1294

Abstract

The most common power system (PS) distribution network fault, single lineto-ground fault (SLGF), causes residual current (I res) to start an electrical arc and high voltage (HV) three times the rated voltage in other healthy phases. HV from capacitive currents (IC) damages cable insulation and PS appliances. Peterson The neutral point coil (PC) reduces (I res) and extinguishes the electric arc, but the fault current (I fault) remains below the protection devices' threshold. Operations and equipment are riskier. PC adaptive eliminates electrical arcs, making the network safer. This paper detects I faults online using Texas instrument validation in MATLAB and adaptive by artificial bee colony (ABC). This paper discusses Texas instrument fault current detection and MATLAB validation. It improves system reliability, device protection, and copper savings by thousands of tons. ABC intelligently optimizes many mathematical problems. ABC with network neural artificial intelligence (AI) improves algorithm performance (artificial bee colony network neural (ABCNN)). This new method may improve distribution network SLGF detection. This first work can work online in electrical power stations by building the (eZdsp F28335-RS232) into the program to send fault signals to the control when SLGF occurs without damaging devices, equipment, cables, or power outages.