Dominicus Danardono Dwi Prija Tjahjana
Universitas Sebelas Maret

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Design of eddy current brake for electric motorcycle braking system Mufti Reza Aulia Putra; Muhammad Nizam; Dominicus Danardono Dwi Prija Tjahjana
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i1.pp41-50

Abstract

Braking systems in motor vehicles generally use a braking system that utilizes friction. The braking performance will decrease caused by using friction rapidly. To overcome this, as an alternative, an electromagnetic braking system can be used by utilizing eddy currents, such as eddy current brakes (ECB). Eddy currents are generated when the rotor pass the magnetic field of the electromagnet. The research aim is to design an ECB system. The performance of the disk design will be determined in this study. The study is about the tendency of the ECB properties. The finite element (FEM) method is used by modeling ECB performance. The experimental results were used to validate the result. The test showed the results of braking using aluminum disk showed the best performance in 12.03 Nm. From these results, the combination of the disks is needed by an appropriate disk design.
Design and simulation of a combined serpentine t-shape magnetorheological brake Faishal Harish Hidayatullah; Ubaidillah Ubaidillah; Endra Dwi Purnomo; Dominicus Danardono Dwi Prija Tjahjana; Ilham Bagus Wiranto
Indonesian Journal of Electrical Engineering and Computer Science Vol 13, No 3: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v13.i3.pp1221-1227

Abstract

A magnetorheological brake (MRB) is a device to dissipate rotational energy using magnetorheological fluids (MRF). MRB can change its braking torque quickly in response to external magnetic field strength. The brake is rotational, utilizing the MRF in shear mode. In this study, the geometrical design of the MRB, magnetic circuit and MRF flow path is addressed. Mathematical models are presented that describe the braking torque of the MRB. A novel prototype is introduced combining T-shape rotor model with serpentine flux magnetic circuit configuration. The rotor member is selected to direct the flux concentration at that location. Serpentine flux configuration is selected to achieve higher torque without increasing the size of MRB by activated more surface area of MRF with the magnetic flux. The finite element method is used to evaluate the magnetic flux density in MRB using FEMM 4.2. FEMM results showed that this novel design could provide sufficient magnetic flux along MRF flow path. Finally, the influence of input current to the MRB on braking torque is investigated. It is found that the braking torque in MRB increases with the increase of the input current. The prototype is formulated as foot-drop prevention orthotic. The MRB would be further integrated into ankle-foot orthoses for post-stroke patients. The design is formulated as a preliminary geometrical design, aiming to obtain the minimum required braking torque.
Experimental Study of Lithium-ion Battery Performance Based on Mini-channel Cooling Plate Ihsan Pratama Rushadiawan; Dominicus Danardono Dwi Prija Tjahjana; Muhammad Nizam; Julian Fikri Arifwardana; Mufti Reza Aulia Putra
Journal of Electrical, Electronic, Information, and Communication Technology Vol 6, No 2 (2024): JOURNAL OF ELECTRICAL, ELECTRONIC, INFORMATION, AND COMMUNICATION TECHNOLOGY
Publisher : Universitas Sebelas Maret (UNS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/jeeict.6.2.92488

Abstract

Making efficient batteries is important nowadays. One potential problem that can hinder this is the thermal runaway that occurs in battery cells. There are various causes of thermal runaway, one of the most common is an increase in temperature that exceeds the optimal allowable limit. Additional cooling will be required in vehicles that use batteries. Battery Thermal Management System (BTMS) with mini-channel cooling plate is one of the methods often used to maintain battery performance. In this study, the performance of Lithium-ion batteries is affected by fluid flow velocity. The experimental process was carried out by charging and discharging with a C-rate of 1C. Cooling is done with ethylene glycol fluid with fluid velocity variations of 0.21 L/min; 0.42 L/min and 0.63 L/min. The results show that fluid flow velocity affects the final battery temperature and battery performance. The optimal fluid velocity is shown at 4.2 L/min. At this speed it can reduce the battery temperature by 6.7°C.
Performance Analysis and Characterization Hybrid Two Wheeller Vehicle with Using a Chassis Dynamometer Julian Fikri Arifwardana; Dominicus Danardono Dwi Prija Tjahjana; Muhammad Nizam; Ihsan Pratama Rushadiawan; Mufti Reza Aulia Putra
Journal of Electrical, Electronic, Information, and Communication Technology Vol 6, No 2 (2024): JOURNAL OF ELECTRICAL, ELECTRONIC, INFORMATION, AND COMMUNICATION TECHNOLOGY
Publisher : Universitas Sebelas Maret (UNS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/jeeict.6.2.92487

Abstract

The extraordinary growth in means of transportation, especially vehicles with internal combustion engines, has made state laws and regulations increasingly stringent. Regulations regarding energy consumption used for passenger and personal mobility and the emissions produced in order to reduce pollution. A hybrid vehicle combines two energies produced from various sources such as an ICE and an electric motor to become a hybrid electric vehicle (HEV). This research discusses hybrid electric vehicles on 2-wheeled vehicles which can be used as a solution that can be developed further before pure electric vehicles (EV) replace motorized vehicles (ICE). This research was done experimentally, by carrying out tests on a dynamometer and on the road testing. The main material used in this research was a Honda PCX 150 vehicle. The results of the test on the dynamometer showed that the performance of the internal combustion engine (ICE) had a torque of 11.12 Nm and a power of 8.20 kW at 7000 rpm. Testing the electric motor (EV), obtained torque results of 11.7 Nm and 2.33 kW power. The road test results for internal combustion engine consumption to consume 1 liter of fuel, capable of covering a distance of 54.55 km. Electricity consumption from 100% to 0% SOC can cover a distance of 46.31 km. Hybrid consumption 1 liter of fuel and battery full 100% capable of covering a distance 57.79 km, with battery condition reduced 16%.