Claim Missing Document
Check
Articles

Found 2 Documents
Search

A bidirectional resonant converter based on wide input range and high efficiency for photovoltaic application Ibrahim Alhamrouni; M. R. Bin Hamzah; Mohamed Salem; Awang Jusoh; Azhar Bin Khairuddin; Tole Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (400.446 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1469-1475

Abstract

This work highlights a modular power conditioning system (PCS) in photovoltaic (PV) applications which consists with a DC-DC converter. The converter is able to regulate and amplify the input DC voltage produced by the PV panal. The implementation of Mosfet as bidirectional switch on the converter yields greater conversion ratio and better voltage regulation than a conventional DC-DC step up converter and PWM resonant converter. It also reduces the switching losses on the output DC voltage of the converter, as the MOSFET switches on primary winding of converter switch on under ZVS conditions. The proposed resonant converter has been designed, with the modification of series resonant converter and PWM boost converter that utilizes the high frequency of AC bidirectional switch to eliminate the weaknesses of used converters. The topology of the proposed converter includes the mode of operations, designing procedure and components selection of the new converter elements. This topology provides a DC output voltage to the inverter at range of about 120Vac-208 Vac. 
AC-Based Differential Evolution Algorithm for Dynamic Transmission Expansion Planning Ibrahim Alhamrouni; Mohamed Salem; Azhar Bin Khairuddin; Jamilatul Lilik; Awang Jusoh; T. Sutikno
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 5: October 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i5.10578

Abstract

This work proposes a method based on a mixed integer nonlinear non-convex programming model to solve the multistage transmission expansion planning (TEP). A meta-heuristic algorithm by the means of differential evolution algorithm (DEA) is employed as an optimization tool. An AC load flow model is used in solving the multistage TEP problem, where accurate and realistic results can be obtained. Furthermore, the work considers the constraints checking and system violation such as real and power generation limits, possible number of lines added, thermal limits and bus voltage limits. The proposed technique is tested on well known and realistic test systems such as the IEEE 24 bus-system and the Colombian 93-bus system. The method has shown high capability in considering the active and reactive power in the same manner and solving the TEP problem. The method produced improved good results in a fast convergence time for the test systems.