Mohd Shareduwan Mohd Kasihmuddin
Universiti Sains Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Hybrid imperialistic competitive algorithm incorporated with hopfield neural network for robust 3 satisfiability logic programming Vigneshwer Kathirvel; Mohd. Asyraf Mansor; Mohd Shareduwan Mohd Kasihmuddin; Saratha Sathasivam
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (955.081 KB) | DOI: 10.11591/ijai.v8.i2.pp144-155

Abstract

Imperialist Competitive algorithm (ICA) is a robust training algorithm inspired by the socio-politically motivated strategy. This paper focuses on utilizing a hybridized ICA with Hopfield Neural Network on a 3- Satisfiability (3-SAT) logic programming. Eventually the performance of the proposed algorithm will be compared to other 2 algorithms, which are HNN3SATES (ES) and HNN-3SATGA (GA). The performance shall be evaluated with the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Sum of Squares Error (SSE), Schwarz Bayesian Criterion (SBC), Global Minima Ratio and Computation Time (CPU time). The expected outcome will portray that the IC algorithm will outperform the other two algorithms in doing 3-SAT logic programming.
Radial basis function neural network for 2 satisfiability programming Shehab Alzaeemi; Mohd. Asyraf Mansor; Mohd Shareduwan Mohd Kasihmuddin; Saratha Sathasivam; Mustafa Mamat
Indonesian Journal of Electrical Engineering and Computer Science Vol 18, No 1: April 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v18.i1.pp459-469

Abstract

Radial Basis Function Neural Network (RBFNN) is very prominent in data processing. However, improving this technique is vital for the NN training process. This paper presents an integrated 2 Satisfiability in radial basis function neural network (RBFNN-2SAT). There are two different types of training in RBFNN, namely no-training technique and half-training technique. The performance of the solutions via Genetic Algorithm (GA) training was investigated by comparing the Radial Basis Function Neural Network No-Training Technique (RBFNN- 2SATNT) and Radial Basis Function Neural Network Half-Training Technique (RBFNN- 2SATHT). The comparison of both techniques was examined on 2 Satisfiability problem by using a C# software that was developed for this experiment. The performance of the RBFNN-2SATNT and RBFNN-2SATHT in performing 2SAT is discussed in terms of root mean squared error (RMSE), sum squared error (SSE), mean absolute percentage error (MAPE), mean absolute error (MAE), number of the hidden neurons and CPU time. Results obtained from a computer simulation showed that RBFNN-2SATHT outperformed RBFNN-2SATNT.