Mohammed Boukabous
Mohammed First University

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

Toward a deep learning-based intrusion detection system for IoT against botnet attacks Idriss Idrissi; Mohammed Boukabous; Mostafa Azizi; Omar Moussaoui; Hakim El Fadili
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i1.pp110-120

Abstract

The massive network traffic data between connected devices in the internet of things have taken a big challenge to many traditional intrusion detection systems (IDS) to find probable security breaches. However, security attacks lean towards unpredictability. There are numerous difficulties to build up adaptable and powerful IDS for IoT in order to avoid false alerts and ensure a high recognition precision against attacks, especially with the rising of Botnet attacks. These attacks can even make harmless devices becoming zombies that send malicious traffic and disturb the network. In this paper, we propose a new IDS solution, baptized BotIDS, based on deep learning convolutional neural networks (CNN). The main interest of this work is to design, implement and test our IDS against some well-known Botnet attacks using a specific Bot-IoT dataset. Compared to other deep learning techniques, such as simple RNN, LSTM and GRU, the obtained results of our BotIDS are promising with 99.94% in validation accuracy, 0.58% in validation loss, and the prediction execution time is less than 0.34 ms.
Crime prediction using a hybrid sentiment analysis approach based on the bidirectional encoder representations from transformers Mohammed Boukabous; Mostafa Azizi
Indonesian Journal of Electrical Engineering and Computer Science Vol 25, No 2: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v25.i2.pp1131-1139

Abstract

Sentiment analysis (SA) is widely used today in many areas such as crime detection (security intelligence) to detect potential security threats in realtime using social media platforms such as Twitter. The most promising techniques in sentiment analysis are those of deep learning (DL), particularly bidirectional encoder representations from transformers (BERT) in the field of natural language processing (NLP). However, employing the BERT algorithm to detect crimes requires a crime dataset labeled by the lexiconbased approach. In this paper, we used a hybrid approach that combines both lexicon-based and deep learning, with BERT as the DL model. We employed the lexicon-based approach to label our Twitter dataset with a set of normal and crime-related lexicons; then, we used the obtained labeled dataset to train our BERT model. The experimental results show that our hybrid technique outperforms existing approaches in several metrics, with 94.91% and 94.92% in accuracy and F1-score respectively.
Review on maintenance of photovoltaic systems based on deep learning and internet of things Younes Hammoudi; Idriss Idrissi; Mohammed Boukabous; Youssef Zerguit; Hicham Bouali
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 2: May 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i2.pp1060-1072

Abstract

Many solar plants have been installed globally, and they must be continuously protected and supervised to ensure their safety and reliability. Photovoltaic plants are susceptible to many defects and failures, and fault detection technology is used to protect and isolate them. Despite numerous international standards, invisible photovoltaic defects continue to cause major issues. As a result, smart technologies like AI (Artificial Intelligence) and IoT are being developed for remote sensing, problem detection, and diagnosis of photovoltaic systems. Solar plants generate not only green electricity but also a lot of data, such as power output. With AI, a clear picture of electricity yields should be possible. The output of entire solar parks could be monitored and analyzed. The AI could also detect malfunctions within a solar park, according to the research. This would speed up and simplify maintenance work. Deep learning (DL) and IoT applications for photovoltaic plants are discussed. The most advanced techniques, such as DL, are discussed in terms of precision and accuracy. Incorporating DL and IoT approaches for fault detection and diagnosis into simple hardware, such as low-cost chips, maybe cost-effective and technically feasible for photovoltaic facilities located in remote locations.
Early wildfire detection using machine learning model deployed in the fog/edge layers of IoT Mounir Grari; Idriss Idrissi; Mohammed Boukabous; Omar Moussaoui; Mostafa Azizi; Mimoun Moussaoui
Indonesian Journal of Electrical Engineering and Computer Science Vol 27, No 2: August 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v27.i2.pp1062-1073

Abstract

The impact of wildfires, even following the fire's extinguishment, continues to affect harmfully public health and prosperity. Wildfires are becoming increasingly frequent and severe, and make the world's biodiversity in a growing serious danger. The fires are responsible for negative economic consequences for individuals, corporations, and authorities. Researchers are developing new approaches for detecting and monitoring wildfires, that make use of advances in computer vision, machine learning, and remote sensing technologies. IoT sensors help to improve the efficiency of detecting active forest fires. In this paper, we propose a novel approach for predicting wildfires, based on machine learning. It uses a regression model that we train over NASA's fire information for resource management system (FIRMS) dataset to predict fire radiant power in megawatts. The analysis of the obtained simulation results (more than 99% in the R2 metric) shows that the ensemble learning model is an effective method for predicting wildfires using an IoT device equipped with several sensors that could potentially collect the same data as the FIRMS dataset, such as smart cameras or drones.
A comparative study of deep learning based language representation learning models Mohammed Boukabous; Mostafa Azizi
Indonesian Journal of Electrical Engineering and Computer Science Vol 22, No 2: May 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v22.i2.pp1032-1040

Abstract

Deep learning (DL) approaches use various processing layers to learn hierarchical representations of data. Recently, many methods and designs of natural language processing (NLP) models have shown significant development, especially in text mining and analysis. For learning vector-space representations of text, there are famous models like Word2vec, GloVe, and fastText. In fact, NLP took a big step forward when BERT and recently GTP-3 came out. In this paper, we highlight the most important language representation learning models in NLP and provide an insight of their evolution. We also summarize, compare and contrast these different models on sentiment analysis, and thus discuss their main strengths and limitations. Our obtained results show that BERT is the best language representation learning model.
Image and video-based crime prediction using object detection and deep learning Mohammed Boukabous; Mostafa Azizi
Bulletin of Electrical Engineering and Informatics Vol 12, No 3: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i3.5157

Abstract

In recent years, the use of artificial intelligence (AI) for image and video-based crime detection has gained significant attention from law enforcement agencies and security experts. Indeed, deep learning (DL) models can learn complex patterns from data and help law enforcement agencies save time and resources by automatically identifying and tracking potential criminals. This contributes to make deep investigations and better steer their targets’ searches. Among others, handheld firearms and bladed weapons are the most frequent objects encountered at crime scenes. In this paper, we propose a DL-based surveillance system that can detect the presence of tracked objects, such as handheld firearms and bladed weapons, as well as may proceed to alert authorities regarding eventual threats before an incident occurs. After making a comparison of different DL-based object detection techniques, such as you only look once (YOLO), single shot multibox detector (SSD), or faster region-based convolutional neural networks (R-CNN), YOLO achieves the optimal balance of mean average precision (mAP) and inference speed for real-time prediction. Thus, we retain YOLOv5 for the implementation of our solution.