Nik Nur Wahidah Nik Hashim
International Islamic University Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Comparison of classifiers using robust features for depression detection on Bahasa Malaysia speech Nik Nur Wahidah Nik Hashim; Nadzirah Ahmad Basri; Mugahed Al-Ezzi Ahmad Ezzi; Nik Mohd Hazrul Nik Hashim
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 1: March 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i1.pp238-253

Abstract

Early detection of depression allows rapid intervention and reduce the escalation of the disorder. Conventional method requires patient to seek diagnosis and treatment by visiting a trained clinician. Bio-sensors technology such as automatic depression detection using speech can be used to assist early diagnosis for detecting remotely those who are at risk. In this research, we focus on detecting depression using Bahasa Malaysia language using speech signals that are recorded remotely via subject’s personal mobile devices. Speech recordings from a total of 43 depressed subjects and 47 healthy subjects were gathered via online platform with diagnosis validation according to the Malay beck depression inventory II (Malay BDI-II), patient health questionnaire (PHQ-9) and subject’s declaration of major depressive disorder (MDD) diagnosis by a trained clinician. Classifier models were compared using time-based and spectrum-based microphone independent feature set with hyperparameter tuning. Random forest performed best for male reading speech with 73% accuracy while support vector machine performed best on both male spontaneous speech and female reading speech with 74% and 73% accuracy, respectively. Automatic depression detection on Bahasa Malaysia language has shown to be promising using machine learning and microphone independent features but larger database is necessary for further validation and improving performance.
Characteristics with opposite of quranic letters mispronunciation detection: a classifier-based approach Tareq AlTalmas; Salmiah Ahmad; Nik Nur Wahidah Nik Hashim; Surul Shahbudin Hassan; Wahju Sediono
Bulletin of Electrical Engineering and Informatics Vol 11, No 5: October 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i5.3715

Abstract

Reading Quran for non-Arab is a challenge due to different mother tongues. learning Quran face-to-face is considered time-consuming. The correct pronunciation of Makhraj and Sifaat are the two things that are considered difficult. In this paper, Sifaat evaluation system was developed, focusing on Sifaat with opposites for teaching the pronunciation of the Quranic letters. A classifier-based approach has been designed for evaluating the Sifaat with opposites, using machine learning technique; the k-nearest neighbour (KNN), the ensemble random undersampling (RUSBoosted), and the support vector machine (SVM). Five separated classifiers were designed to classify the Quranic letters according to group of Sifaat with opposites, where letters that are classified to the wrong groups are considered mispronounced. The paper started with identifying the acoustic features to represent each group of Sifaat. Then, the classification method was identified to be used with each group of Sifaat, where best models were selected relying on various metrics; accuracy, recall, precision, and F-score. Cross-validation scheme was then used to protect against overfitting and estimate an unbiased generalization performance. Various acoustic features and classification models were investigated, however, only the outperformed models are reported in this paper. The results showed a good performance for the five classification models.