Glori Stephani Saragih
University of Indonesia

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search

Pancreatic cancer classification using logistic regression and random forest Zuherman Rustam; Fildzah Zhafarina; Glori Stephani Saragih; Sri Hartini
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i2.pp476-481

Abstract

In the medical field, technology machinery is needed to solve several classification problems. Therefore, this research is useful to solve the problem of the medical field by using machine learning. This study discusses the classification of pancreatic cancer by using regression logistics and random forest. By comparing the accuracy, precision, recall (sensitivity), and F1-score of both methods, then we will know which method is better in classifying the pancreatic cancer dataset that we get from Al-Islam Hospital, Bandung, Indonesia. The results showed that random forest has better accuracy than logistic regressions. It can be seen with maximum accuracy of logistic regressions 96.48 with 30% data training and random forest 99.38% with 20% of data training.
Comparison some of kernel functions with support vector machines classifier for thalassemia dataset Ilsya Wirasati; Zuherman Rustam; Jane Eva Aurelia; Sri Hartini; Glori Stephani Saragih
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i2.pp430-437

Abstract

In the medical field, accurate classification of medical data is really important because of its impact on disease detection and patient’s treatment. Technology, machine learning, is needed to help medical staff to improve accuracy to classify disease. This research discussed some kernel functions, such as gaussian radial basis function (RBF) kernel, Polynomial kernel, and linear kernel with support vector machine (SVM) to classify thalassemia data. Thalassemia is a genetic blood disorder which is also one of the major public health problems. In this paper, there is an explanation about thalassemia, SVM, and some of the kernel functions that serve as a comprehensive source for the next research about this topic. Furthermore, there is a comparison result from three kernel functions to find out which one has the best performance. The result is gaussian RBF kernel with SVM is the best method with an average of accuracy 99,63%.
Lung cancer classification using fuzzy c-means and fuzzy kernel C-Means based on CT scan image Zuherman Rustam; Aldi Purwanto; Sri Hartini; Glori Stephani Saragih
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i2.pp291-297

Abstract

Cancer is one of the diseases with the highest mortality rate in the world. Cancer is a disease when abnormal cells grow out of control that can attack the body's organs side by side or spread to other organs. Lung cancer is a condition when malignant cells form in the lungs. To diagnose lung cancer can be done by taking x-ray images, CT scans, and lung tissue biopsy. In this modern era, technology is expected to help research in the field of health. Therefore, in this study feature extraction from CT images was used as data to classify lung cancer. We used CT scan image data from SPIE-AAPM Lung CT challenge 2015. Fuzzy C-Means and fuzzy kernel C-Means were used to classify the lung nodule from the patient into benign or malignant. Fuzzy C-Means is a soft clustering method that uses Euclidean distance to calculate the cluster center and membership matrix. Whereas fuzzy kernel C-Means uses kernel distance to calculate it. In addition, the support vector machine was used in another study to obtain 72% average AUC. Simulations were performed using different k-folds. The score showed fuzzy kernel C-Means had the highest accuracy of 74%, while fuzzy C-Means obtained 73% accuracy.
Hepatitis classification using support vector machines and random forest Jane Eva Aurelia; Zuherman Rustam; Ilsya Wirasati; Sri Hartini; Glori Stephani Saragih
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i2.pp446-451

Abstract

Hepatitis is a medical condition defined by inflammation of the liver. It can be caused by infection of the liver by hepatitis viruses or is of unknown aetiology. There are 5 main hepatitis viruses, such as virus types A, B, C, D and E. The infection may occur with limited or no symptoms, but also may include some symptoms like abdominal pain, dark urine, extreme fatigue, jaundice, nausea or vomiting. Because Indonesia is a large archipelago, the prevalence of viral infections varies greatly by region of acute hepatitis patients. This research uses data of hepatitis examination result with amount of 113 data and 5 features. The method that used is support vector machines (SVM) and random forest method. SVM is the classification method that uses discriminant hyper-plane, dividing to classes. meanwhile, random forest is a tree-based ensemble depending on a collection of random variables. SVM and random forest (RF) are applied to predict hepatitis data, and then the results will be compared.
Linear discriminant analysis and support vector machines for classifying breast cancer Zuherman Rustam; Yasirly Amalia; Sri Hartini; Glori Stephani Saragih
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i1.pp253-256

Abstract

Breast cancer is an abnormal cell growth in the breast that keeps changed uncontrolled and it forms a tumor. The tumor can be benign or malignant. Benign could not be dangerous to health and cancerous, but malignant could be has a probability dangerous to health and be cancerous. A specialist doctor will diagnose the patient and give treatment based on the diagnosis which is benign or malignant. Machine learning offer times efficiency to determine a cancer cell. The machine will learn the pattern based on the information from the dataset. Support vector machines and linear discriminant analysis are common methods that can be used in the classification of cancer. In this study, both of linear discriminant analysis and support vector machines are compared by looking from accuracy, sensitivity, specificity, and F1-score. We will know which methods are better in classifying breast cancer dataset. The result shows that the support vector machine has better performance than the linear discriminant analysis. It can be seen from the accuracy is 98.77%.