Claim Missing Document
Check
Articles

Found 3 Documents
Search

Optimization of artificial neural network topology for membrane bioreactor filtration using response surface methodology Syahira Ibrahim; Norhaliza Abdul Wahab; Fatimah Sham Ismail; Yahaya Md Sam
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 9, No 1: March 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (925.565 KB) | DOI: 10.11591/ijai.v9.i1.pp117-125

Abstract

The optimization of artificial neural networks (ANN) topology for predicting permeate flux of palm oil mill effluent (POME) in membrane bioreactor (MBR) filtration has been investigated using response surface methodology (RSM). A radial basis function neural network (RBFNN) model, trained by gradient descent with momentum (GDM) algorithms was developed to correlate output (permeate flux) to the four exogenous input variables (airflow rate, transmembrane pressure, permeate pump and aeration pump). A second-order polynomial model was developed from training results for natural log mean square error of 50 developed ANNs to generate 3D response surfaces. The optimum ANN topology had minimum ln MSE when the number of hidden neurons, spread, momentum coefficient, learning rate and number of epochs were 16, 1.4, 0.28, 0.3 and 1852, respectively. The MSE and regression coeffcient of the ANN model were determined as 0.0022 and 0.9906 for training, 0.0052 and 0.9839 for testing and 0.0217 and 0.9707 for validation data sets. These results confirmed that combining RSM and ANN was precise for predicting permeates flux of POME on MBR system. This development may have significant potential to improve model accuracy and reduce computational time.
Estimation of pH and MLSS using Neural Network Nur Sakinah Ahmad Yasmin; Muhammad Sani Gaya; Norhaliza Abdul Wahab; Yahaya Md Sam
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 15, No 2: June 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v15i2.6144

Abstract

The main challenges to achieving a reliable model which can predict well the process are the nonlinearities associated with many biological and biochemical processes in the system. Artificial intelligent approaches revolved as better alternative in predicting the system. Typical measured variables for effluent quality of wastewater treatment plant are pH, and mixed liquor suspended solids (MLSS). This paper presents an adaptive neuro-fuzzy inference system (ANFIS) and feed-forward neural network (FFNN) modeling applied to the domestic plant of the Bunus regional sewage treatment plant. ANFIS and feed- forward neural network techniques as nonlinear function approximators have demonstrated the capability of predicting nonlinear behaviour of the system. The data for the period of two years and nine months sampled weekly (140 week samples) were collected and used for this study. Simulation studies showed that the prediction capability of the ANFIS model is somehow better than that of the FFNN model. The ANFIS model may serves as a valuable prediction tool for the plant.
Improved Third Order PID Sliding Mode Controller for Electrohydraulic Actuator Tracking Control Muhamad Fadli Ghani; Rozaimi Ghazali; Hazriq Izzuan Jaafar; Chong Chee Soon; Yahaya Md Sam; Zulfatman Has
Journal of Robotics and Control (JRC) Vol 3, No 2 (2022): March
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i2.14236

Abstract

An electrohydraulic actuator (EHA) system is a combination of hydraulic systems and electrical systems which can produce a rapid response, high power-to-weight ratio, and large stiffness. Nevertheless, the EHA system has nonlinear behaviors and modeling uncertainties such as frictions, internal and external leakages, and parametric uncertainties, which lead to significant challenges in controller design for trajectory tracking. Therefore, this paper presents the design of an intelligent adaptive sliding mode proportional integral and derivative (SMCPID) controller, which is the main contribution toward the development of effective control on a third-order model of a double-acting EHA system for trajectory tracking, which significantly reduces chattering under noise disturbance. The sliding mode controller (SMC) is created by utilizing the exponential rule and the Lyapunov theorem to ensure closed-loop stability. The chattering in the SMC controller has been significantly decreased by substituting the modified sigmoid function for the signum function. Particle swarm optimization (PSO) was used to lower the total of absolute errors to adjust the controller. In order to demonstrate the efficacy of the SMCPID controller, the results for trajectory tracking and noise disturbance rejection were compared to those obtained using the proportional integral and derivative (PID), the proportional and derivative (PD), and the sliding mode proportional and derivative (SMCPD) controllers, respectively. In conclusion, the results of the extensive research given have indicated that the SMCPID controller outperforms the PD, PID, and SMCPD controllers in terms of overall performance.