Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

Design and simulation hybrid filter for 17 level multilevel inverter Marshal Andrea Hutabarat; Syafruddin Hasan; Ali Hanafiah Rambe; Suherman Suherman
Bulletin of Electrical Engineering and Informatics Vol 9, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (643.711 KB) | DOI: 10.11591/eei.v9i3.890

Abstract

The increasing of renewable energy applications such as solar cells, wind power, ocean thermal and HVDC (high voltage direct current) cause increment in the use of the inverter circuit. Harmonics that are generated by the inverter have negative impacts on the electrical equipment; harmonics cause excessive heat and may shorten the life of electrical equipment. A multilevel inverter is an arranged of cascaded inverters which aims to reduce totalĀ  harmonic distortion (THD). This paper proposes the design of 17 levels of a single-phase cascaded multilevel inverter with a hybrid filter insertion. By using PSIM simulator, the hybrid filter is proven reducing THD better than single pulse width modulation (SPWM) inverter. Installation of the hybrid filter is able to fix a maximum of 0.23% THDv and a maximum of 1.05% THDi. Hybrid filter installation reduces the value of THD to comply with IEEE 519-2014 standard.
WiFi-Friendly Building to Enable WiFi Signal Indoor Suherman Suherman
Bulletin of Electrical Engineering and Informatics Vol 7, No 2: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v7i2.871

Abstract

The 802.11 networks (wireless fidelity (WiFi) networks) have been the main wireless internet access infrastructure within houses and buildings. Besides access point placement, building architectures contribute to the WiFi signal spreading. Even dough WiFi installation in buildings becomes prevalent; the building architectures still do not take WiFi-friendliness into considerations. Current research on building and WiFi are on access point location, location based service and home automation. In fact, the more friendly the building to WiFi signal, the more efficient the 802.11 based wireless infrastructure. This paper introduces the term of WiFi-friendly building by considering signal propagations, the obstacle impact, as well as proposing an ornament-attaced reflector and a hole-in-the-wall structure to improve WiFi signal distribution. Experiment results show that obstacle materials made of concrete reducing WiFi signal the most, followed by metal and wood. Reflecting materials are able to improve the received signal level, for instance, the implemented ornament-attached reflector is able improving the received signal up to 6.56 dBm. Further, the hole-in-the-wall structure is successfully increasing WiFi signal up to 2.3 dBm.