Nagender Aneja
Universiti Brunei Darussalam

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Transfer learning for cancer diagnosis in histopathological images Sandhya Aneja; Nagender Aneja; Pg Emeroylariffion Abas; Abdul Ghani Naim
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 1: March 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i1.pp129-136

Abstract

Transfer learning allows us to exploit knowledge gained from one task to assist in solving another but relevant task. In modern computer vision research, the question is which architecture performs better for a given dataset. In this paper, we compare the performance of 14 pre-trained ImageNet models on the histopathologic cancer detection dataset, where each model has been configured as naive model, feature extractor model, or fine-tuned model. Densenet161 has been shown to have high precision whilst Resnet101 has a high recall. A high precision model is suitable to be used when follow-up examination cost is high, whilst low precision but a high recall/sensitivity model can be used when the cost of follow-up examination is low. Results also show that transfer learning helps to converge a model faster.
Defense against adversarial attacks on deep convolutional neural networks through nonlocal denoising Sandhya Aneja; Nagender Aneja; Pg Emeroylariffion Abas; Abdul Ghani Naim
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 3: September 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i3.pp961-968

Abstract

Despite substantial advances in network architecture performance, the susceptibility of adversarial attacks makes deep learning challenging to implement in safety-critical applications. This paper proposes a data-centric approach to addressing this problem. A nonlocal denoising method with different luminance values has been used to generate adversarial examples from the Modified National Institute of Standards and Technology database (MNIST) and Canadian Institute for Advanced Research (CIFAR-10) data sets. Under perturbation, the method provided absolute accuracy improvements of up to 9.3% in the MNIST data set and 13% in the CIFAR-10 data set. Training using transformed images with higher luminance values increases the robustness of the classifier. We have shown that transfer learning is disadvantageous for adversarial machine learning. The results indicate that simple adversarial examples can improve resilience and make deep learning easier to apply in various applications.
Predictive linguistic cues for fake news: a societal artificial intelligence problem Sandhya Aneja; Nagender Aneja; Ponnurangam Kumaraguru
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 4: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i4.pp%p

Abstract

Media news are making a large part of public opinion and, therefore, must not be fake. News on web sites, blogs, and social media must be analyzed before being published. In this paper, we present linguistic characteristics of media news items to differentiate between fake news and real news using machine learning algorithms. Neural fake news generation, headlines created by machines, semantic incongruities in text and image captions generated by machine are other types of fake news problems. These problems use neural networks which mainly control distributional features rather than evidence. We propose applying correlation between features set and class, and correlation among the features to compute correlation attribute evaluation metric and covariance metric to compute variance of attributes over the news items. Features unique, negative, positive, and cardinal numbers with high values on the metrics are observed to provide a high area under the curve (AUC) and F1-score.