Abd Alnasir Riyadh Finjan
University of Babylon

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Bigradient neural network-based quantum particle swarm optimization for blind source separation Hussein M. Salman; Ali Kadhum M. Al-Qurabat; Abd Alnasir Riyadh Finjan
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i2.pp355-364

Abstract

An independent component analysis (ICA) is one of the solutions of a blind source separation problem. ICA is a statistical approach that depends on the statistical properties of the mixed signals. The purpose of the ICA method is to demix the mixed source signals (observation signals) and rcovering those signals. The abbreviation of the problem is that the ICA needs for optimizing by using one of the optimization approaches as swarm intelligent, neural neworks, and genetic algorithms. This paper presents a hybrid method to optimize the ICA method by using the quantum particle swarm optimization method (QPSO) to optimize the Bigradient neural network method that applies to separate mixed signals and recover sources signals. The results of an implement this work prove that this method gave good results comparing with other methods such as the Bigradient neural network and the QPSO method, based on several evaluation measures as signal-to-noise ratio, signal-to-distortion ratio, absolute value correlation coefficient, and the computation time.