Esraa Zuhair Sameen
Al-Farahidi University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Face detection and recognition with 180 degree rotation based on principal component analysis algorithm Assad H. Thary Al-Ghrairi; Ali Abdulwahhab Mohammed; Esraa Zuhair Sameen
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 2: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i2.pp593-602

Abstract

This paper presents a simple and fast recognition system with various facial expressions, poses, and rotation. The proposed system performed in two phases. Face detection is the first phase. The front and profile face detected cropped face area from the image by Viola-Jones algorithm and the right side face is detected from the image by taking the flip of the profile image. Principal component analysis (eigenfaces) algorithm is used in the recognition phase and depends on created database models used to be compared with test face image input to the recognition procedure. For training and testing the system, two sets of the image of the file exchange interface (FEI) database have been used to identify the person. The experimental result shows the effectiveness and robustness of the method used for the detection of the face and achieves high accuracy of 96%, which improves the recognition performance with low execution time. Furthermore, the accuracy of 35 trained images for recognition is 97.143% with average time execution which is (0.323657s). Also, the accuracy of 15 tested images for recognition is 93.315% with average time execution which is (0.3348s) which indicates a good and strong success and accuracy method for facial recognition.
Realtime human face tracking and recognition system on uncontrolled environment Assad H. Thary Al-Ghrairi; Noor Hussein Fallooh Al-Anbari; Esraa Zuhair Sameen
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 4: August 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i4.pp4246-4255

Abstract

Recently, one of the most important biometrics is that automatically recognized human faces are based on dynamic facial images with different rotations and backgrounds. This paper presents a real-time system for human face tracking and recognition with various expressions of the face, poses, and rotations in an uncontrolled environment (dynamic background). Many steps are achieved in this paper to enhance, detect, and recognize the faces from the image frame taken by web-camera. The system has three steps: the first is to detect the face, Viola-Jones algorithm is used to achieve this purpose for frontal and profile face detection. In the second step, the color space algorithm is used to track the detected face from the previous step. The third step, principal component analysis (eigenfaces) algorithm is used to recognize faces. The result shows the effectiveness and robustness depending on the training and testing results. The real-time system result is compared with the results of the previous papers and gives a success, effectiveness, and robustness recognition rate of 91.12% with a low execution time. However, the execution time is not fixed due depending on the frame background and specification of the web camera and computer.