Abdelali Zakrani
Hassan II University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Improving software development effort estimation using support vector regression and feature selection Abdelali Zakrani; Mustapha Hain; Ali Idri
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (519.463 KB) | DOI: 10.11591/ijai.v8.i4.pp399-410

Abstract

Accurate and reliable software development effort estimation (SDEE) is one of the main concerns for project managers. Planning and scheduling a software project using an inaccurate estimate may cause severe risks to the software project under development such as delayed delivery, poor quality software, missing features. Therefore, an accurate prediction of the software effort plays an important role in the minimization of these risks that can lead to the project failure. Nowadays, the application of artificial intelligence techniques has grown dramatically for predicting software effort. The researchers found that these techniques are suitable tools for accurate prediction. In this study, an improved model is designed for estimating software effort using support vector regression (SVR) and two feature selection (FS) methods. Prior to building model step, a preprocessing stage is performed by random forest or Boruta feature selection methods to remove unimportant features. Next, the SVR model is tuned by a grid search approach. The performance of the models is then evaluated over eight wellknown datasets through 30%holdout validation method. To show the impact of feature selection on the accuracy of SVR models, the proposed model was compared with SVR model without feature selection. The results indicated that SVR with feature selection outperforms SVR without FS in terms of the three accuracy measures used in this empirical study.
An enhanced support vector regression model for agile projects cost estimation Assia Najm; Abdelali Zakrani; Abdelaziz Marzak
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 1: March 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i1.pp265-275

Abstract

The appearance of agile software development techniques (ASDT) since 2001 has encouraged many organizations to move to an agile approach. ASDT presents an opportunity for researchers and professionals, but it has many challenges as well. One of the most critical challenges is agile effort prediction. Hence, many studies have investigated agile software development cost estimation (ASDCE). The objective of this study is twofold: First, to propose an improved model based on support vector regression with radial bias function kernel (SVR-RBF) enhanced by the optimized artificial immune network (Optainet). Second, to perform a detailed comparative analysis of the proposed method compared to other existing optimization techniques in the literature and applied for ASDCE. The experimental evaluation was carried out by assessing the performance of the proposed method using some trusted measures like standardized accuracy (SA), mean absolute error (MAE), prediction at level p (Pred(p)), mean balanced relative error (MBRE), mean inverted balanced relative error (MIBRE), and logarithmic standard deviation (LSD). Throughout a dataset with 21 agile projects using the leave-one-out cross-validation (LOOCV) technique. The results obtained prove that the proposed model enhances the accuracy of the SVR-RBF model, and it outperforms the majority of existing models in the literature.