Jonnadula Dr.J.Harikiran Harikiran
VIT University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Hyperspectral image classification using support vector machines Jonnadula Dr.J.Harikiran Harikiran
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 9, No 4: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v9.i4.pp684-690

Abstract

In this paper, a novel approach for hyperspectral image classification technique is presented using principal component analysis (PCA), bidimensional empirical mode decomposition (BEMD) and support vector machines (SVM). In this process, using PCA feature extraction technique on Hyperspectral Dataset, the first principal component is extracted. This component is supplied as input to BEMD algorithm, which divides the component into four parts, the first three parts represents intrensic mode functions (IMF) and last part shows the residue. These BIMFs and residue image is further taken as input to the SVM for classification. The results of experiments on two popular datasets of hyperspectral remote sensing scenes represent that the proposed-model offers a competitive analyticalperformance in comparison to some established methods.