Achmad Wahid Kurniawan
Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro Semarang

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

PENGENALAN MOTIF BATIK MENGGUNAKAN DETEKSI TEPI CANNY DAN K-NEAREST NEIGHBOR Johanes Widagdho Yodha; Achmad Wahid Kurniawan
Techno.Com Vol 13, No 4 (2014): November 2014 (Hal. 198-262)
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (870.524 KB) | DOI: 10.33633/tc.v13i4.607

Abstract

Salah satu budaya ciri khas Indonesia yang telah dikenal dunia adalah batik. Penelitian ini bertujuan untuk mengenali 6 jenis motif batik pada buku karangan H.Santosa Doellah yang berjudul “Batik: Pengaruh Zaman dan Lingkungan”. Proses klasifikasi akan melalui 3 tahap yaitu preprosesing, feature extraction dan klasifikasi. Preproses mengubah citra warna batik menjadi citra grayscale. Pada tahap feature extraction citra grayscale ditingkatkan kontrasnya dengan histogram equalization dan kemudian menggunakan deteksi tepi Canny untuk memisahkan motif batik dengan backgroundnya dan untuk mendapatkan pola dari motif batik tersebut. Hasil ekstraksi kemudian dikelompokkan dan diberi label sesuai motifnya masing-masing dan kemudian diklasifikasikan menggunakan k-¬Nearest Neighbor menggunakan pencarian jarak Manhattan. Hasil uji coba diperoleh akurasi tertinggi mencapai 100% pada penggunaan data¬ testing sama dengan data training (dataset sebanyak 300 image). Pada penggunaan data training yang berbeda dengan data testing diperoleh akurasi tertinggi 66,67%. Kedua akurasi tersebut diperoleh dengan menggunakan lower threshold = 0.010 dan upper threshold = 0.115 dan menggunakan k=1. Kata kunci : Batik, Edge Detection, Canny, k-Nearest Neighbor, Manhattan distance
PERBANDINGAN PENGGUNAAN DETEKSI TEPI DENGAN METODE LAPLACE, SOBEL DAN PREWIT DAN CANNY PADA PENGENALAN POLA Johanes Widagdho Yodha; Achmad Wahid Kurniawan
Techno.Com Vol 13, No 3 (2014): Agustus 2014 (Hal. 132-197)
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (719.095 KB) | DOI: 10.33633/tc.v13i3.570

Abstract

Pengenalan pola merupakan salah satu cabang dari kecerdasan buatan. Dalam pengenalan pola terdapat beberapa langkah yang dilalui. Langkah-langkah yang dilewati diantara preprosesing, ekstraksi fitur dan terakhir klasifikasi. Preprosesing merupakan proses membedakan gambar dengan backgroundnya. Pada tahap preprosesing sebagian besar penelitian mengubah citra Red Green Blue menjadi citra grayscale. Pada tahap ekstraksi fitur, terdapat banyak metode untuk diterapkan, diantaranya deteksi tepi dengan metode Laplace, Sobel & Prewit dan Canny. Dalam berbagai penelitian yang telah dilakukan, penggunaan deteksi tepi Canny untuk segmentasi atau ekstraksi fitur memperoleh hasil yang lebih akurat dibandingkan dengan deteksi tepi lainnya. Setelah dilakukan ekstraksi fitur, tahap berikutnya adalah mengklasifikasikan data. Banyak pula metode untuk mengklasifikasikan sebuah data, diantaranya yang paling sederhana adalah dengan menggunakan metode k-Nearest Neighbor yang mana metode tersebut memiliki keunggulan terhadap data yang memiliki banyak noise serta efektif terhadap data yang berukuran sangat besar. Sedangkan untuk melakukan pengukuran jarak, digunakan Manhattan Distance, karena dalam beberapa penelitian, penggunaan Manhattan Distance memiliki keakurasian yang lebih tinggi dibandingkan dengan Euclidean Distance. Kata Kunci : pengenalan pola, deteksi tepi, Laplace, Sobel & Prewit, Canny, k-Nearest Neighbour, Manhattan Distance